95 research outputs found

    Decay threshold of acetylated rattan (Calamus manan) against soft rot

    Get PDF
    We investigated the resistance of acetylated rattan against soft rot and other soil inhabiting micro-organisms in comparison with wood of beech and Scots pine. Calamus manan of 10 and 13 years old under rubber tree canopy was acetylated to different levels by reaction times (0.25 to 30 hours) and was tested for soft rot decay for 32 weeks. Acetylated rattan at decay protection thresholds of 15.4% and 16.2% weight gain (WG) were fully protected, as shown by both weight loss and strength loss criteria. The static bending properties of untreated rattan decayed by soft rot were significantly lower than for acetylated rattan

    Effect of acetylation on the physical and static bending properties of cultivated Rotan Manau (Calamus manan) grown in Peninsular Malaysia

    Get PDF
    The physical and static bending properties of cultivated `rotan manau` (Calamus manan) reacted with acetic anhydride at 110 °C for the time intervals of 0.25 to 30 hours were investigated. The study aimed to investigate the effects of various reaction times on the physical and static bending properties. Rattans aged 10 and 13 years were obtained from local rubber tree plantations. This study found that almost all the physical properties of acetylated rattan were not significantly different by age (except specific gravity changes) and reaction periods (except weight gain and OH substitution). The static bending properties varied by rattan age, which the modulus of rupture (MoR), modulus of elasticity (MoE) and maximum load (ML), was not significantly different by reaction period for both ages, except for the MoR of the older acetylated rattan. The acetylation of rattan, performed at 110°C for prolong reaction period, did not impair the static bending properties

    Classification of decay resistance against white and brown rot fungi within the cultivated Calamus manan stems

    Get PDF
    The decay resistance classes of cultivated Calamus manan aged 10 and 13 years old were investigated. One stem of each age was divided into five different portions namely basal (1.5 metre), upper basal (5.5 metre), middle (13.5 metre), upper middle (17.5 metre) and top (22.5 metre) portions above the ground. Cross-wise, the stem was cut into periphery, intermediate and centre sections. The specimen of size 30 mm × 10 mm × thickness (l × w × t) was oven-dried at 103oC for 24 hours and exposed to agar contained Coriolus versicolor (white rot, FPRL 28A), Pycnoporus sanguineus (White rot) and Coniophora puteana (brown rot, FPRL 11E) for 12 weeks according to ASTM D2017-81 (1986). The results showed that the decay resistance of C. manan varies with fungus, but not obviously different with the age and portion. The periphery section has the best resistance class compared to intermediate and centre sections. C. manan has a better resistant class against brown rot than those of white rot fungi

    Temporal and Spatial Distribution of Finfish Bycatch in the U.S. Atlantic Bottom Longline Shark Fishery

    Get PDF
    Bycatch in U.S. fisheries has become an increasingly important issue to both fisheries managers and the public, owing to the wide range of marine resources that can be involved. From 2002 to 2006, the Commercial Shark Fishery Observer Program (CSFOP) and the Shark Bottom Longline Observer Program (SBLOP) collected data on catch and bycatch caught on randomly selected vessels of the U.S. Atlantic shark bottom longline fishery. Three subregions (eastern Gulf of Mexico, South Atlantic, Mid-Atlantic Bight), five years (2002–06), four hook types (small, medium, large, and other), seven depth ranges (300 m), and eight broad taxonomic categories (e.g. Selachimorpha, Batoidea, Serranidae, etc.) were used in the analyses. Results indicated that the majority of bycatch (number) was caught in the eastern Gulf of Mexico and that the Selachimorpha taxon category made up over 90% of the total bycatch. The factors year followed by depth were the most common significant factors affecting bycatch

    Different Conceptualizations of River Basins to Inform Management of Environmental Flows

    Get PDF
    Environmental flows are a critical tool for addressing ecological degradation of river systems brought about by increasing demand for limited water resources. The importance of basin scale management of environmental flows has long been recognized as necessary if managers are to achieve social, economic, and environmental objectives. The challenges in managing environmental flows are now emerging and include the time taken for changes to become manifest, uncertainty around large-scale responses to environmental flows and that most interventions take place at smaller scales. The purpose of this paper is to describe how conceptual models can be used to inform the development, and subsequent evaluation of ecological objectives for environmental flows at the basin scale. Objective setting is the key initial step in environmental flow planning and subsequently provides a foundation for effective adaptive management. We use the implementation of the Basin Plan in Australia's Murray-Darling Basin (MDB) as an example of the role of conceptual models in the development of environmental flow objectives and subsequent development of intervention monitoring and evaluation, key steps in the adaptive management of environmental flows. The implementation of the Basin Plan was based on the best science available at the time, however, this was focused on ecosystem responses to environmental flows. The monitoring has started to reveal that limitations in our conceptualization of the basin may reduce the likelihood of achieving of basin scale objectives. One of the strengths of the Basin Plan approach was that it included multiple conceptual models informing environmental flow management. The experience in the MDB suggests that the development of multiple conceptual models at the basin scale will help increase the likelihood that basin-scale objectives will be achieved

    Bootstrapping artificial evolution to design robots for autonomous fabrication

    Get PDF
    A long-term vision of evolutionary robotics is a technology enabling the evolution of entire autonomous robotic ecosystems that live and work for long periods in challenging and dynamic environments without the need for direct human oversight. Evolutionary Robotics has been widely used due to its capability of creating unique robot designs in simulation. Recent work has shown that it is possible to autonomously construct evolved designs in the physical domain, however this brings new challenges: the autonomous manufacture and assembly process introduces new constraints that are not apparent in simulation. To tackle this, we introduce a new method for producing a repertoire of diverse but manufacturable robots. This repertoire is used to seed an evolutionary loop that subsequently evolves robot designs and controllers capable of solving a maze-navigation task. We show that compared to random initialisation, seeding with a diverse and manufacturable population speeds up convergence and on some tasks, increases performance, while maintaining manufacturability

    Practical hardware for evolvable robots

    Get PDF
    The evolutionary robotics field offers the possibility of autonomously generating robots that are adapted to desired tasks by iteratively optimising across successive generations of robots with varying configurations until a high-performing candidate is found. The prohibitive time and cost of actually building this many robots means that most evolutionary robotics work is conducted in simulation, but to apply evolved robots to real-world problems, they must be implemented in hardware, which brings new challenges. This paper explores in detail the design of an example system for realising diverse evolved robot bodies, and specifically how this interacts with the evolutionary process. We discover that every aspect of the hardware implementation introduces constraints that change the evolutionary space, and exploring this interplay between hardware constraints and evolution is the key contribution of this paper. In simulation, any robot that can be defined by a suitable genetic representation can be implemented and evaluated, but in hardware, real-world limitations like manufacturing/assembly constraints and electrical power delivery mean that many of these robots cannot be built, or will malfunction in operation. This presents the novel challenge of how to constrain an evolutionary process within the space of evolvable phenotypes to only those regions that are practically feasible: the viable phenotype space. Methods of phenotype filtering and repair were introduced to address this, and found to degrade the diversity of the robot population and impede traversal of the exploration space. Furthermore, the degrees of freedom permitted by the hardware constraints were found to be poorly matched to the types of morphological variation that would be the most useful in the target environment. Consequently, the ability of the evolutionary process to generate robots with effective adaptations was greatly reduced. The conclusions from this are twofold. 1) Designing a hardware platform for evolving robots requires different thinking, in which all design decisions should be made with reference to their impact on the viable phenotype space. 2) It is insufficient to just evolve robots in simulation without detailed consideration of how they will be implemented in hardware, because the hardware constraints have a profound impact on the evolutionary space

    A tool for assessing the climate change mitigation and health impacts of environmental policies: the Cities Rapid Assessment Framework for Transformation (CRAFT).

    Get PDF
    Background: A growing number of cities, including Greater London, have set ambitious targets, including detailed policies and implementation plans, to reach global goals on sustainability, health, and climate change. Here we present a tool for a rapid assessment of the magnitude of impact of specific policy initiatives to reach these targets. The decision-support tool simultaneously quantifies the environmental and health impacts of specified selected policies. Methods: The 'Cities Rapid Assessment Framework for Transformation (CRAFT)' tool was applied to Greater London. CRAFT quantifies the effects of ten environmental policies on changes in (1) greenhouse gas (GHG) emissions, (2) exposures to environmental hazards, (3) travel-related physical activity, and (4) mortality (the number of attributable deaths avoided in one typical year). Publicly available data and epidemiological evidence were used to make rapid quantitative estimates of these effects based on proportional reductions in GHG emissions and environmental exposures from current baseline levels and to compute the mortality impacts. Results: The CRAFT tool estimates that, of roughly 50,000 annual deaths in Greater London, the modelled hazards (PM 2.5 (from indoor and outdoor sources), outdoor NO 2, indoor radon, cold, overheating) and low travel-related physical activity are responsible for approximately 10,000 premature environment-related deaths. Implementing the selected polices could reduce the annual mortality number by about 20% (~1,900 deaths) by 2050. The majority of these deaths (1,700) may be avoided through increased uptake in active travel. Thus, out of ten environmental policies, the 'active travel' policy provides the greatest health benefit. Also, implementing the ten policies results in a GHG reduction of around 90%. Conclusions: The CRAFT tool quantifies the effects of city policies on reducing GHG emissions, decreasing environmental health hazards, and improving public health. The tool has potential value for policy makers through providing quantitative estimates of health impacts to support and prioritise policy options
    corecore