1,365 research outputs found
Lab Fattening and Non-invasive Estimates of Body Composition in Deer Mice
Total body electrical conductivity measurements and lipid composition were determined for the deer mouse (Peromyscus maniculatus) to derive species specific calibration equations for use with EM-SCAN estimates of lean and fat tissue. For each individual, total body electrical conductivity was measured by EM-SCAN, and actual lipid content was determined by chemical extraction. Then, using estimated and actual lipid values, separate calibration equations were generated for freshly captured (lean) and laboratory maintained (fat) individuals, and a combined equation was derived for all individuals. These equations were variable in the accuracy of lipid estimates; the lowest relative error estimate (percent body fat) was obtained with the equation for fat individuals while the highest error (percent body fat) was associated with the lean condition. Although high average error rates for lipid might preclude the use of this approach when absolute accuracy is necessary with lean individuals, estimates of lean tissue were very accurate regardless of body composition condition. When removed from the field and maintained in the laboratory, body composition changed significantly and quite rapidly with relative body fat doubling in six weeks. Thus, maintenance under laboratory conditions might affect physiologic and behavioral parameters in such subjects
MIGHTEE: multi-wavelength counterparts in the COSMOS field
In this paper, we combine the Early Science radio continuum data from the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) Survey, with optical and near-infrared data and release the cross-matched catalogues. The radio data used in this work covers 0.86 deg2 of the COSMOS field, reaches a thermal noise of 1.7 μJy beam−1 and contains 6102 radio components. We visually inspect and cross-match the radio sample with optical and near-infrared data from the Hyper Suprime-Cam (HSC) and UltraVISTA surveys. This allows the properties of active galactic nuclei and star-forming populations of galaxies to be probed out to z ≈ 5. Additionally, we use the likelihood ratio method to automatically cross-match the radio and optical catalogues and compare this to the visually cross-matched catalogue. We find that 94 per cent of our radio source catalogue can be matched with this method, with a reliability of 95 per cent. We proceed to show that visual classification will still remain an essential process for the cross-matching of complex and extended radio sources. In the near future, the MIGHTEE survey will be expanded in area to cover a total of ∼20 deg2; thus the combination of automated and visual identification will be critical. We compare the redshift distribution of SFG and AGN to the SKADS and T-RECS simulations and find more AGN than predicted at z ∼ 1
Public perceptions of climate change as a human health risk : surveys of the United States, Canada and Malta
We used data from nationally representative surveys conducted in the United States, Canada and Malta between 2008 and 2009 to answer three questions: Does the public believe that climate change poses human health risks, and if so, are they seen as current or future risks? Whose health does the public think will be harmed? In what specific ways does the public believe climate change will harm human health? When asked directly about the potential impacts of climate change on health and well-being, a majority of people in all three nations said that it poses significant risks; moreover, about one third of Americans, one half of Canadians, and two-thirds of Maltese said that people are already being harmed. About a third or more of people in the United States and Canada saw themselves (United States, 32%; Canada, 67%), their family (United States, 35%; Canada, 46%), and people in their community (United States, 39%; Canada, 76%) as being vulnerable to at least moderate harm from climate change. About one third of Maltese (31%) said they were most concerned about the risk to themselves and their families. Many Canadians said that the elderly (45%) and children (33%) are at heightened risk of harm, while Americans were more likely to see people in developing countries as being at risk than people in their own nation. When prompted, large numbers of Canadians and Maltese said that climate change can cause respiratory problems (78–91%), heat-related problems (75–84%), cancer (61–90%), and infectious diseases (49–62%). Canadians also named sunburn (79%) and injuries from extreme weather events (73%), and Maltese cited allergies (84%). However, climate change appears to lack salience as a health issue in allthree countries: relatively few people answered open-ended questions in a manner that indicated clear top-of-mind associations between climate change and human health risks. We recommend mounting public health communication initiatives that increase the salience of the human health consequences associated with climate change.peer-reviewe
Community-powered urban stream restoration: A vision for sustainable and resilient urban ecosystems
Urban streams can provide amenities to people living in cities, but those benefits are reduced when streams become degraded, potentially even causing harm (disease, toxic compounds, etc.). Governments and institutions invest resources to improve the values and services provided by urban streams; however, the conception, development, and implementation of such projects may not include meaningful involvement of community members and other stakeholders. Consequently, project objectives may be misaligned with community desires and needs, and projects may fail to achieve their goals. In February 2020, the 5(th) Symposium on Urbanization and Stream Ecology, an interdisciplinary meeting held every 3 to 5 y, met in Austin, Texas, USA, to explore new approaches to urban stream projects, including ways to maximize the full range of potential benefits by better integrating community members into project identification and decision making. The symposium included in-depth discussion about 4 nearby field case studies, participation of multidisciplinary urban stream experts from 5 continents, and input from the Austin community. Institutional barriers to community inclusion were identified and analyzed using real-world examples, both from the case studies and from the literature, which clarified disparities in power, equity, and values. Outcomes of the symposium have been aggregated into a vision that challenges the present institutional approach to urban stream management and a set of strategies to systematically address these barriers to improve restoration solutions. Integrating community members and other stakeholders throughout the urban restoration process, and a transparent decision-making process to resolve divergent objectives, can help identify appropriate goals for realizing both the ecological and social benefits of stream restoration
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
A Systematic Search of Zwicky Transient Facility Data for Ultracompact Binary LISA-detectable Gravitational-wave Sources
Using photometry collected with the Zwicky Transient Facility, we are conducting an ongoing survey for binary systems with short orbital periods (P_b < 1 hr) with the goal of identifying new gravitational-wave sources detectable by the upcoming Laser Interferometer Space Antenna (LISA). We present a sample of 15 binary systems discovered thus far, with orbital periods ranging from 6.91 to 56.35 minutes. Of the 15 systems, seven are eclipsing systems that do not show signs of significant mass transfer. Additionally, we have discovered two AM Canum Venaticorum systems and six systems exhibiting primarily ellipsoidal variations in their lightcurves. We present follow-up spectroscopy and high-speed photometry confirming the nature of these systems, estimates of their LISA signal-to-noise ratios, and a discussion of their physical characteristics
- …