2,457 research outputs found

    Flat Thomas-Fermi artificial atoms

    Full text link
    We consider two-dimensional (2D) "artificial atoms" confined by an axially symmetric potential V(ρ)V(\rho). Such configurations arise in circular quantum dots and other systems effectively restricted to a 2D layer. Using the semiclassical method, we present the first fully self-consistent and analytic solution yielding equations describing the density distribution, energy, and other quantities for any form of V(ρ)V(\rho) and an arbitrary number of confined particles. An essential and nontrivial aspect of the problem is that the 2D density of states must be properly combined with 3D electrostatics. The solution turns out to have a universal form, with scaling parameters ρ2/R2\rho^2/R^2 and R/aBR/a_B^* (RR is the dot radius and aBa_B^* is the effective Bohr radius)

    A versatile source of polarisation entangled photons for quantum network applications

    Get PDF
    We report a versatile and practical approach for generating high-quality polarization entanglement in a fully guided-wave fashion. Our setup relies on a high-brilliance type-0 waveguide generator producing paired photon at a telecom wavelength associated with an advanced energy-time to polarisation transcriber. The latter is capable of creating any pure polarization entangled state, and allows manipulating single photon bandwidths that can be chosen at will over five orders of magnitude, ranging from tens of MHz to several THz. We achieve excellent entanglement fidelities for particular spectral bandwidths, i.e. 25 MHz, 540 MHz and 100 GHz, proving the relevance of our approach. Our scheme stands as an ideal candidate for a wide range of network applications, ranging from dense division multiplexing quantum key distribution to heralded optical quantum memories and repeaters.Comment: 5 figure

    Detector imperfections in photon-pair source characterization

    Full text link
    We analyze how imperfections in single-photon detectors impact the characterization of photon-pair sources. We perform exact calculations to reveal the effects of multi-pair emissions and of noisy, non-unit efficiency, non photon-number resolving detections on the Cauchy-Schwarz parameter, on the second order auto-correlation and cross-correlation functions, and on the visibilities of both Hong-Ou-Mandel and Bell-like interferences. We consider sources producing either two-mode squeezed states or states with a Poissonian photon distribution. The proposed formulas are useful in practice to determine the impacts of multi-pair emissions and dark counts in standard tests used in quantum optics.Comment: 9 pages, 11 figure

    Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation

    Full text link
    In this paper we demonstrate an active polarization drift compensation scheme for optical fibres employed in a quantum key distribution experiment with polarization encoded qubits. The quantum signals are wavelength multiplexed in one fibre along with two classical optical side channels that provide the control information for the polarization compensation scheme. This set-up allows us to continuously track any polarization change without the need to interrupt the key exchange. The results obtained show that fast polarization rotations of the order of 40*pi rad/s are effectively compensated for. We demonstrate that our set-up allows continuous quantum key distribution even in a fibre stressed by random polarization fluctuations. Our results pave the way for Bell-state measurements using only linear optics with parties separated by long-distance optical fibres

    Photon-bunching measurement after 2x25km of standard optical fibers

    Full text link
    To show the feasibility of a long distance partial Bell-State measurement, a Hong-Ou-Mandel experiment with coherent photons is reported. Pairs of degenerate photons at telecom wavelength are created by parametric down conversion in a periodically poled lithium niobate waveguide. The photon pairs are separated in a beam-splitter and transmitted via two fibers of 25km. The wave-packets are relatively delayed and recombined on a second beam-splitter, forming a large Mach-Zehnder interferometer. Coincidence counts between the photons at the two output modes are registered. The main challenge consists in the trade-off between low count rates due to narrow filtering and length fluctuations of the 25km long arms during the measurement. For balanced paths a Hong-Ou-Mandel dip with a visibility of 47.3% is observed, which is close to the maximal theoretical value of 50% developed here. This proves the practicability of a long distance Bell state measurement with two independent sources, as e.g. required in an entanglement swapping configuration in the scale of tens of km.Comment: 6 pages, 5 figure

    High coherence photon pair source for quantum communication

    Full text link
    This paper reports a novel single mode source of narrow-band entangled photon pairs at telecom wavelengths under continuous wave excitation, based on parametric down conversion. For only 7 mW of pump power it has a created spectral radiance of 0.08 pairs per coherence length and a bandwidth of 10 pm (1.2 GHz). The effectively emitted spectral brightness reaches 3.9*10^5 pairs /(s pm). Furthermore, when combined with low jitter single photon detectors, such sources allow for the implementation of quantum communication protocols without any active synchronization or path length stabilization. A HOM-Dip with photons from two autonomous CW sources has been realized demonstrating the setup's stability and performance.Comment: 12 pages, 4 figure

    Evaluation and exploration of a social prescribing initiative: study protocol

    Get PDF
    Attention is being given to healthcare initiatives with the potential to save money and improve lives. One example is Social Prescribing (SP), which supports patients whose ill-health is exacerbated by loneliness. While evidence has accumulated attesting to SP’s efficacy, one limitation has been the lack of a theoretical framework, which limits understanding of how tackling loneliness improves health. In our evaluation of an SP pathway, we adopt a 'Social Cure' approach, which posits that social relations affect health. Our study will evaluate the efficacy of the pathway and determine the extent to which group processes are responsible for health improvements
    corecore