To show the feasibility of a long distance partial Bell-State measurement, a
Hong-Ou-Mandel experiment with coherent photons is reported. Pairs of
degenerate photons at telecom wavelength are created by parametric down
conversion in a periodically poled lithium niobate waveguide. The photon pairs
are separated in a beam-splitter and transmitted via two fibers of 25km. The
wave-packets are relatively delayed and recombined on a second beam-splitter,
forming a large Mach-Zehnder interferometer. Coincidence counts between the
photons at the two output modes are registered. The main challenge consists in
the trade-off between low count rates due to narrow filtering and length
fluctuations of the 25km long arms during the measurement. For balanced paths a
Hong-Ou-Mandel dip with a visibility of 47.3% is observed, which is close to
the maximal theoretical value of 50% developed here. This proves the
practicability of a long distance Bell state measurement with two independent
sources, as e.g. required in an entanglement swapping configuration in the
scale of tens of km.Comment: 6 pages, 5 figure