293 research outputs found

    Octupole strength in the neutron-rich calcium isotopes

    Full text link
    Low-lying excited states of the neutron-rich calcium isotopes 4852^{48-52}Ca have been studied via γ\gamma-ray spectroscopy following inverse-kinematics proton scattering on a liquid hydrogen target using the GRETINA γ\gamma-ray tracking array. The energies and strengths of the octupole states in these isotopes are remarkably constant, indicating that these states are dominated by proton excitations.Comment: 15 pages, 3 figure

    SPECT/CT imaging of the lumbar spine in chronic low back pain: a case report

    Get PDF
    Mechanical low back pain is a common indication for Nuclear Medicine imaging. Whole-body bone scan is a very sensitive but poorly specific study for the detection of metabolic bone abnormalities. The accurate localisation of metabolically active bone disease is often difficult in 2D imaging but single photon emission computed tomography/computed tomography (SPECT/CT) allows accurate diagnosis and anatomic localisation of osteoblastic and osteolytic lesions in 3D imaging. We present a clinical case of a patient referred for evaluation of chronic lower back pain with no history of trauma, spinal surgery, or cancer. Planar whole-body scan showed heterogeneous tracer uptake in the lumbar spine with intense localisation to the right lateral aspect of L3. Integrated SPECT/CT of the lumbar spine detected active bone metabolism in the right L3/L4 facet joint in the presence of minimal signs of degenerative osteoarthrosis on CT images, while a segment demonstrating more gross degenerative changes was more quiescent with only mild tracer uptake. The usefulness of integrated SPECT/CT for anatomical and functional assessment of back pain opens promising opportunities both for multi-disciplinary clinical assessment and treatment for manual therapists and for research into the effectiveness of manual therapies

    A scoping review of biopsychosocial risk factors and co-morbidities for common spinal disorders

    Get PDF
    OBJECTIVE: The purpose of this review was to identify risk factors, prognostic factors, and comorbidities associated with common spinal disorders. METHODS: A scoping review of the literature of common spinal disorders was performed through September 2016. To identify search terms, we developed 3 terminology groups for case definitions: 1) spinal pain of unknown origin, 2) spinal syndromes, and 3) spinal pathology. We used a comprehensive strategy to search PubMed for meta-analyses and systematic reviews of case-control studies, cohort studies, and randomized controlled trials for risk and prognostic factors and cross-sectional studies describing associations and comorbidities. RESULTS: Of 3,453 candidate papers, 145 met study criteria and were included in this review. Risk factors were reported for group 1: non-specific low back pain (smoking, overweight/obesity, negative recovery expectations), non-specific neck pain (high job demands, monotonous work); group 2: degenerative spinal disease (workers\u27 compensation claim, degenerative scoliosis), and group 3: spinal tuberculosis (age, imprisonment, previous history of tuberculosis), spinal cord injury (age, accidental injury), vertebral fracture from osteoporosis (type 1 diabetes, certain medications, smoking), and neural tube defects (folic acid deficit, anti-convulsant medications, chlorine, influenza, maternal obesity). A range of comorbidities was identified for spinal disorders. CONCLUSION: Many associated factors for common spinal disorders identified in this study are modifiable. The most common spinal disorders are co-morbid with general health conditions, but there is a lack of clarity in the literature differentiating which conditions are merely comorbid versus ones that are risk factors. Modifiable risk factors present opportunities for policy, research, and public health prevention efforts on both the individual patient and community levels. Further research into prevention interventions for spinal disorders is needed to address this gap in the literature

    New Results from the Cryogenic Dark Matter Search Experiment

    Full text link
    Using improved Ge and Si detectors, better neutron shielding, and increased counting time, the Cryogenic Dark Matter Search (CDMS) experiment has obtained stricter limits on the cross section of weakly interacting massive particles (WIMPs) elastically scattering from nuclei. Increased discrimination against electromagnetic backgrounds and reduction of neutron flux confirm WIMP-candidate events previously detected by CDMS were consistent with neutrons and give limits on spin-independent WIMP interactions which are >2X lower than previous CDMS results for high WIMP mass, and which exclude new parameter space for WIMPs with mass between 8-20 GeV/c^2.Comment: 4 pages, 4 figure

    Current understanding of the relationship between cervical manipulation and stroke: what does it mean for the chiropractic profession?

    Get PDF
    The understanding of the relationship between cervical manipulative therapy (CMT) and vertebral artery dissection and stroke (VADS) has evolved considerably over the years. In the beginning the relationship was seen as simple cause-effect, in which CMT was seen to cause VADS in certain susceptible individuals. This was perceived as extremely rare by chiropractic physicians, but as far more common by neurologists and others. Recent evidence has clarified the relationship considerably, and suggests that the relationship is not causal, but that patients with VADS often have initial symptoms which cause them to seek care from a chiropractic physician and have a stroke some time after, independent of the chiropractic visit

    Health systems strengthening to arrest the global disability burden: Empirical development of prioritised components for a global strategy for improving musculoskeletal health

    Get PDF
    Introduction Despite the profound burden of disease, a strategic global response to optimise musculoskeletal (MSK) health and guide national-level health systems strengthening priorities remains absent. Auspiced by the Global Alliance for Musculoskeletal Health (G-MUSC), we aimed to empirically derive requisite priorities and components of a strategic response to guide global and national-level action on MSK health. Methods Design: mixed-methods, three-phase design. Phase 1: qualitative study with international key informants (KIs), including patient representatives and people with lived experience. KIs characterised the contemporary landscape for MSK health and priorities for a global strategic response. Phase 2: scoping review of national health policies to identify contemporary MSK policy trends and foci. Phase 3: informed by phases 1-2, was a global eDelphi where multisectoral panellists rated and iterated a framework of priorities and detailed components/actions. Results Phase 1: 31 KIs representing 25 organisations were sampled from 20 countries (40% low and middle income (LMIC)). Inductively derived themes were used to construct a logic model to underpin latter phases, consisting of five guiding principles, eight strategic priority areas and seven accelerators for action. Phase 2: of the 165 documents identified, 41 (24.8%) from 22 countries (88% high-income countries) and 2 regions met the inclusion criteria. Eight overarching policy themes, supported by 47 subthemes, were derived, aligning closely with the logic model. Phase 3: 674 panellists from 72 countries (46% LMICs) participated in round 1 and 439 (65%) in round 2 of the eDelphi. Fifty-nine components were retained with 10 (17%) identified as essential for health systems. 97.6% and 94.8% agreed or strongly agreed the framework was valuable and credible, respectively, for health systems strengthening. Conclusion An empirically derived framework, co-designed and strongly supported by multisectoral stakeholders, can now be used as a blueprint for global and country-level responses to improve MSK health and prioritise system strengthening initiatives

    Three dimensional evaluation of posture in standing with the PosturePrint: an intra- and inter-examiner reliability study

    Get PDF
    Abstract Background Few digitizers can measure the complexity of upright human postural displacements in six degrees of freedom of the head, rib cage, and pelvis. Methods In a University laboratory, three examiners performed delayed repeated postural measurements on forty subjects over two days. Three digital photographs (left lateral, AP, right lateral) of each of 40 volunteer participants were obtained, twice, by three examiners. Examiners placed 13 markers on the subjects before photography and chose 16 points on the photographic images. Using the PosturePrint® internet computer system, head, rib cage, and pelvic postures were calculated as rotations (Rx, Ry, Rz) in degrees and translations (Tx, Tz) in millimeters. For reliability, two different types (liberal = ICC3,1 & conservative = ICC2,1) of inter- and intra-examiner correlation coefficients (ICC) were calculated. Standard error of measurements (SEM) and mean absolute differences within and between observers' measurements were also determined. Results All of the "liberal" ICCs were in the excellent range (> 0.84). For the more "conservative" type ICCs, four Inter-examiner ICCs were in the interval (0.5–0.6), 10 ICCs were in the interval (0.61–0.74), and the remainder were greater than 0.75. SEMs were 2.7° or less for all rotations and 5.9 mm or less for all translations. Mean absolute differences within examiners and between examiners were 3.5° or less for all rotations and 8.4 mm or less for all translations. Conclusion For the PosturePrint® system, the combined inter-examiner and intra-examiner correlation coefficients were in the good (14/44) and excellent (30/44) ranges. SEMs and mean absolute differences within and between examiners' measurements were small. Thus, this posture digitizer is reliable for clinical use

    Zwanzig-Mori projection operators and EEG dynamics: deriving a simple equation of motion

    Get PDF
    We present a macroscopic theory of electroencephalogram (EEG) dynamics based on the laws of motion that govern atomic and molecular motion. The theory is an application of Zwanzig-Mori projection operators. The result is a simple equation of motion that has the form of a generalized Langevin equation (GLE), which requires knowledge only of macroscopic properties. The macroscopic properties can be extracted from experimental data by one of two possible variational principles. These variational principles are our principal contribution to the formalism. Potential applications are discussed, including applications to the theory of critical phenomena in the brain, Granger causality and Kalman filters

    New results from the Cryogenic Dark Matter Search experiment

    Get PDF
    Using improved Ge and Si detectors, better neutron shielding, and increased counting time, the Cryogenic Dark Matter Search (CDMS) experiment has obtained stricter limits on the cross section of weakly interacting massive particles (WIMPs) elastically scattering from nuclei. Increased discrimination against electromagnetic backgrounds and reduction of the neutron flux confirm WIMP-candidate events previously detected by CDMS were consistent with neutrons and give limits on spin-independent WIMP interactions which are \u3e2× lower than previous CDMS results for high WIMP mass, and which exclude new parameter space for WIMPs with mass between 8 and 20 GeV/c2
    corecore