411 research outputs found

    Insight into structure: function relationships in a molecular spin-crossover crystal, from a related weakly cooperative compound

    Get PDF
    This is a repository copy of Insight into structure: function relationships in a molecular spin-crossover crystal, from a related weakly cooperative compound. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/83008/ Version: Accepted Version Article: Elhaïk, J, Kilner, C and Halcrow, MA (2014) Insight into structure: function relationships in a molecular spin-crossover crystal, from a related weakly cooperative compound. European Journal of Inorganic Chemistry, 2014 (26). 4250 -4253. ISSN 14344250 -4253. ISSN -1948 https://doi.org/10.1002/ejic.201402623 [email protected] https://eprints.whiterose.ac.uk/ Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version -refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. Insight into Compound Jérôme Elhaïk, [a] Colin A. Kilner, [a] and Malcolm A. Halcrow* [a] Abstract: The ClO4 − salt of [FeL2] 2+ (L = 2,6-bis(3-methylpyrazol-1-yl)pyridine) undergoes very gradual thermal spin-crossover centered just below room temperature. In contrast, the BF4 − salt of the same complex exhibits an abrupt and structured spin-transition at lower temperature, with a complicated structural chemistry. The difference can be attributed to a much larger change in molecular structure between the spin states of the complex in the more cooperative BF4 − salt, leading to an increased kinetic barrier for their interconversion. Consistent with that suggestion, the high-spin and low-spin structures of weakly cooperative [FeL2][ClO4]2 are almost superimposable. The continuing interest in thermally and optically switchable spin-crossover (SCO) materials [9] Its thermal spin-transition takes place in two steps, via a re-entrant symmetry-breaking transition to an intermediate crystal phase, with a tripled unit cell containing a mixture of high-spin and low-spin sites. The first of these steps occurs abruptly with hysteresis, but at a temperature that varies according to the water content of the sample (x). In contrast the second step is kinetically slow, and is only achieved when the sample is poised at 100 K for 1.5 hrs. [10] Its excited spin-state trapping (LIESST [11] ) behavior is also unique, in that its thermodynamic high low spin transition and kinetically controlled high low spin-state relaxation exhibit different profiles and are effectively decoupled from each other. [12] Although unexceptional in itself, 1[ClO4]2 provides useful insight into the structural origin of the unusual behavior of the BF4 − salt by providing a rare comparison between strongly and weakly cooperative spin-crossover materials based on the same complex molecule. At 300 K, MT for 1[ClO4]2 is 2.4 cm 3 mol -1 K, lower than expected for a high-spin iron(II) complex with this ligand type (3.4-3.6 cm 3 mol -1 K)

    Theoretical Study of Spin Crossover in 30 Iron Complexes

    Full text link

    Babes, bones, and isotopes: a stable isotope investigation on non-adults from Aventicum, Roman Switzerland (1st-3rd c. CE)

    Get PDF
    The study of infant feeding practices in archaeological populations can aid in the understanding of cultural attitudes towards dietary choices and how specific circumstances experienced by mothers and their offspring influence childhood health and survivorship. Breastfeeding and weaning patterns have received increased interest in Roman bioarchaeology, especially through the application of stable isotopic investigation of nitrogen (δ15N) and carbon (δ13C) values. This study presents the stable isotopic results of the first Roman bone sample analyzed from Switzerland (30 non-adults and 9 females), allowing us an unprecedented insight into health and diet at the site of Aventicum/Avenches, the capital city of the territory of Helvetii in Roman times (1st-3rd c. AD). The fact that the majority of the non-adult samples subject to stable isotope analysis were perinates, highlights the complex relationship between their δ15N and δ13C values and those of adult females, as different factors, including variation of fetal and maternal stable isotope values, the possible effects of intrauterine growth, as well as maternal/fetal disease and/or nutritional stress (e.g. nutritional deficiencies such as scurvy, parasitic infections, such as malaria), could have influenced the observed elevated δ15N values

    On the possibility of magneto-structural correlations: detailed studies of di-nickel carboxylate complexes

    Get PDF
    A series of water-bridged dinickel complexes of the general formula [Ni<sub>2</sub>(μ<sub>2</sub>-OH<sub>2</sub>)(μ2- O<sub>2</sub>C<sup>t</sup>Bu)<sub>2</sub>(O<sub>2</sub>C<sup>t</sup>Bu)2(L)(L0)] (L = HO<sub>2</sub>C<sup>t</sup>Bu, L0 = HO<sub>2</sub>C<sup>t</sup>Bu (1), pyridine (2), 3-methylpyridine (4); L = L0 = pyridine (3), 3-methylpyridine (5)) has been synthesized and structurally characterized by X-ray crystallography. The magnetic properties have been probed by magnetometry and EPR spectroscopy, and detailed measurements show that the axial zero-field splitting, D, of the nickel(ii) ions is on the same order as the isotropic exchange interaction, J, between the nickel sites. The isotropic exchange interaction can be related to the angle between the nickel centers and the bridging water molecule, while the magnitude of D can be related to the coordination sphere at the nickel sites

    Analysing the temporal water quality dynamics of Lake Basaka, Central Rift Valley of Ethiopia

    Get PDF
    Abstract: This study presents the general water quality status and temporal quality dynamics of Lake Basaka water in the past about 5 decades. Water samples were collected and analysed for important physico-chemical quality parameters following standard procedures. The result showed that Lake Basaka water is highly saline and alkaline and experiencing a general reducing trends in ionic concentrations of quality parameters due to the dilution effect. About 10-fold reduction of total ionic concentration occurred in the Lake over the period of 2 decades (1960-1980). There was a sharp and fast decline in EC, Cl, SO4, Na, and K ions from early 1960s up to the late 1980s, and then became relatively stable. Some ions (eg. Na, Ca, Mg, Cl, SO4) are showing increment in recent years. This characteristics of the lake water is terrible in relation to its potential to inundate the nearby areas in the near future. The expansion of such quality water has negative effects on the water resources of the region, especially soil quality, drainage and groundwater, in terms of salinity, sodicity and specific ion toxicity. The regimes of soil moisture, solute and groundwater could be affected, concurrently affecting the productivity and sustainability of the sugar estate. Thus, there is an urgent need to identify the potential sources of water and chemicals to the lake and devise an appropriate mitigation and/or remedial measures

    Characterising beach intertidal bar systems using multi-annual LiDAR data

    Get PDF
    This is the peer reviewed version of the following article: Miles, A., Ilic, S., Whyatt, D., & James, M. R. (2019). Characterising beach intertidal bar systems using multi‐annual LiDAR data. Earth Surface Processes and Landforms, which has been published in final form at https://doi.org/10.1002/esp.4594. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-ArchivingIntertidal bars are common in meso-macrotidal low-to-moderate energy coastal environments and an understanding of their morphodynamics is important from the perspective of both coastal scientists and managers. However, previous studies have typically been limited by considering bar systems two-dimensionally, or with very limited alongshore resolution. This paper presents the first multi-annual study of intertidal alongshore bars and troughs in a macro-tidal environment using airborne LiDAR data to extract three-dimensional bar morphology at high resolution. Bar and trough positions are mapped along a 17.5 km stretch of coastline in the northwest of England on the eastern Irish Sea, using eight complete, and one partial, LiDAR surveys spanning 17 years. Typically, 3 – 4 bars are present, with significant obliquity identified in their orientation. This orientation mirrors the alignment of waves from the dominant south-westerly direction of wave approach, undergoing refraction as they approach the shoreline. Bars also become narrower and steeper as they migrate onshore, in a pattern reminiscent of wave shoaling. This suggests that the configuration of the bars is being influenced by overlying wave activity. Net onshore migration is present for the entire coastline, though rates vary alongshore, and periods of offshore migration may occur locally, with greatest variability between northern and southern regions of the coastline. This work highlights the need to consider intertidal bar systems as three-dimensional, particularly on coastlines with complex configurations and bathymetry, as localised studies of bar migration can overlook three-dimensional behaviour. Furthermore, the wider potential of LiDAR data in enabling high-resolution morphodynamic studies is clear, both within the coastal domain and beyond

    Data to Support a Study of Exploring the Influence of Counterions on a Hysteretic Spin-Transition in Isomorphous Iron(II) Complex Salts

    Get PDF
    The hysteretic spin transition shown by [FeL2][BF4]2 is quenched in its isomorphous perchlorate salt, which reflects more sluggish lattice dynamics in the presence of the larger ClO4 ion

    3,5-Dimethyl-4-nitroso-1H-pyrazole

    Get PDF
    In the unit cell of the title compound, C5H7N3O, there are two conformers (A and B) which differ in the position of the oxime group with respect to the protonated pyrazole nitro­gen (trans in the A conformer and cis in the B conformer) and in the geometric parameters. The oxime group exists in the nitroso form in both conformers. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and N—H⋯N hydrogen bonds into zigzag-like chains along the b axis
    corecore