25 research outputs found

    Maintaining a frozen shipping environment for Phase I clinical trial distribution

    Get PDF
    The need for stringent temperature control provides significant challenges to pharmaceutical distributors operating in all sectors of the industry. Products with a frozen storage label requirement can be significantly problematic. This study aimed to provide evidence of robust and reproducible frozen shipment arrangements to be operated by a Phase I clinical trial unit. Dry ice was used to achieve a deep frozen internal parcel environment and was tested in a laboratory setting using ultra low temperature loggers within dummy product packs within the test parcels. The laboratory dry ice packing configuration was then repeatedly tested in real time transits using a Glasgow to London delivery schedule. An internal temperature specification was set to not exceed −10 °C during the transport. During each delivery, external temperature monitoring measured the temperature stress experienced by the box in transit. Results demonstrated the ability of the chosen system to not exceed −13.6 °C on average (−10 °C maximum) when exposed to external temperatures of up to +20.1 °C (mean kinetic temperature). The effect was maintained for at least 52.5 h

    Rheology to guide formulation development of particulate dispersions for automated capsule filling

    Get PDF
    The rheological properties of pharmaceutical formulations intended for liquid fill hard gelatin capsules are fundamental for their filling performance. Here we used the rheological characteristics of particulate drug formulations to develop formulations suitable for automated capsule filling

    A quest to find the cause of unknown peaks in cleaning verification chromatography following the manufacture of pharmaceutical preparations

    Get PDF
    Cleaning equipment following the manufacture of pharmaceutical products is of paramount importance to ensure that the following batch of product manufactured is not contaminated with therapeutic levels of the prior manufactured product. The patient must only receive the therapeutic effect expected from the drug they take. During a number of cleaning verification studies, it was discovered that unknown peaks were present in the chromatography, the source of which was unclear. A study was performed to examine a theory that the gloves used by the operator during the cleaning procedure, in combination with the solvent based cleaning products were responsible for the unknown peaks that were evident in the chromatography. NASA had performed a similar study for the critical parts of the space shuttle in the space shuttle program. The following poster examines the conclusions that were made from the data that was attained for the study. The data will answer the question: ‘Are the gloves themselves responsible by way of leachables for the unknown peaks in the cleaning verification chromatography.

    Multidimensional analysis of human intestinal fluid composition

    Get PDF
    The oral administration of solid dosage forms is the commonest method to achieve systemic therapy and relies on the drug’s solubility in human intestinal fluid (HIF), a key factor that influences bioavailability and biopharmaceutical classification. However, HIF is difficult to obtain and is known to be variable, which has led to the development of a range of simulated intestinal fluid (SIF) systems to determine drug solubility in vitro. In this study we have applied a novel multidimensional approach to analyse and characterise HIF composition using a published data set in both fasted and fed states with a view to refining the existing SIF approaches. The data set provided 152 and 172 measurements of five variables (total bile salt, phospholipid, total free fatty acid, cholesterol and pH) in time-dependent HIF samples from 20 volunteers in the fasted and fed state, respectively. The variable data sets for both fasted state and fed state are complex, do not follow normal distributions but the amphiphilic variable concentrations are correlated. When plotted 2-dimensionally a generally ellipsoid shaped data cloud with a positive slope is revealed with boundaries that enclose published fasted or fed HIF compositions. The data cloud also encloses the majority of fasted state and fed state SIF recipes and illustrates that the structured nature of design of experiment (DoE) approaches does not optimally cover the variable space and may examine media compositions that are not biorelevant. A principal component analysis in either fasted or fed state in combination with fitting an ellipsoid shape to enclose the data results in 8 points that capture over 95% of the compositional variability of HIF. The variable’s average rate of concentration change in both fasted state and fed state over a short time scale (10 min) is zero and a Euclidean analysis highlights differences between the fasted and fed states and among individual volunteers. The results indicate that a 9-point DoE (8 + 1 central point) could be applied to investigate drug solubility in vitro and provide statistical solubility limits. In addition, a single point could provide a worst-case solubility measurement to define the lowest biopharmaceutical classification boundary or for use during drug development. This study has provided a novel description of HIF composition. The approach could be expanded in multiple ways by incorporation of further data sets to improve the statistical coverage or to cover specific patient groups (e.g., paediatric). Further development might also be possible to analyse information on the time dependent behaviour of HIF and to guide HIF sampling and analysis protocols

    Ab initio calculation of the neutron-proton mass difference

    Get PDF
    The existence and stability of atoms rely on the fact that neutrons are more massive than protons. The measured mass difference is only 0.14\% of the average of the two masses. A slightly smaller or larger value would have led to a dramatically different universe. Here, we show that this difference results from the competition between electromagnetic and mass isospin breaking effects. We performed lattice quantum-chromodynamics and quantum-electrodynamics computations with four nondegenerate Wilson fermion flavors and computed the neutron-proton mass-splitting with an accuracy of 300300 kilo-electron volts, which is greater than 00 by 55 standard deviations. We also determine the splittings in the Σ\Sigma, Ξ\Xi, DD and Ξcc\Xi_{cc} isospin multiplets, exceeding in some cases the precision of experimental measurements.Comment: 57 pages, 15 figures, 6 tables, revised versio

    The weakest link is getting stronger

    No full text
    The manufacture of sterile products attracts the greatest regulatory scrutiny of all product types, since manufacturing failures can be fatal and manufacturers are required to utilise the most robust sterilisation method possible to limit the probability of this occurring. However, aseptic preparation, which is the last resort manufacturing method, continues to be employed since for sensitive products this is the only feasible route. Aseptic preparation has always suffered from the potential for undetected, or undetectable, microbial ingress occurring during the manipulation of sterile components. The implementation of isolator systems have provided an advance over standard clean rooms technologies and the weakest link of aseptic preparation is getting stronger

    Comparative analysis of the physical and chemical properties of new and expired blister pack foils for hard gelatin capsule packaging

    Get PDF
    Blister packs are commonly used to package hard gelatin capsules. Shelf life restrictions of the blister pack components can be problematic for low volume users due to the requirement to purchase larger quantities. Here we investigated the physical and chemical properties of blister pack foils to determine if a change in their nature occurred when the expiry date was exceeded

    Synthetic low density lipoprotein, a novel biomimetic LiPID supplement for serum free tissue culture

    No full text
    Lipid supplementation in serum-free tissue culture employs solubilization techniques to permit the addition of lipids, but these systems are potentially cytotoxic and do not present lipid in a natural form. In this research a simplified preparation method for synthetic low-density lipoprotein (sLDL) has been developed that involves microfluidization of a solvent lipid solution in a simple aqueous solution. This produces material with size and ζ potential characteristics similar to those of native LDL. sLDL supplementation in tissue culture media provides cholesterol concentrations higher than those achieved by 10% serum supplementation and existing chemically defined lipid supplements. sLDL stimulates NS0 and U937 cellular proliferation in completely serum-free media, the former in a lipid concentration dependent manner that is also related to both the receptor peptide structure employed and its concentration on the particle. The greatest NS0 cellular proliferation was obtained at the highest cholesterol concentration tested (0.5 mg/mL), which was 10 times higher than the cholesterol concentration achieved by standard 10% serum supplementation. U937 cellular proliferation was influenced by variation of sLDLapos;s fatty acid constituents with a natural mixture producing maximal effect. Cell uptake studies in NS0 with fluorescently labeled sLDL indicated that assimilation is reduced by competition from native LDL. The planktonic nature of NS0 cell growth meant that cell binding and uptake experiments were difficult to conduct because of cellular aggregation. However, sLDL-induced U937 proliferation is ablated by the presence of an anti-LDL receptor antibody. The results indicate that sLDL uptake is via the LDL receptor and that sLDL can function as a lipid supplement for serum-free media capable of supplementation to cholesterol concentrations up to 0.5 mg/mL. Cellular uptake studies also suggest that sLDL will be useful for the targeting and delivery of materials to cells. sLDL therefore represents a new and promising synthetic biomimetic alternative to native LDL with multiple applications

    A synthetic low density lipoprotein particle capable of supporting U937 proliferation in vitro

    No full text
    A synthetic LDL (sLDL) has been prepared by combining a lipid microemulsion with amphipathic peptides containing the apoprotein B receptor domain. The biological properties of sLDL have been investigated using the U937 in vitro cell proliferation assay. sLDL exhibits a concentration dependent and saturable stimulation of U937 proliferation. By utilizing different amphipathic peptides, variable proliferation is achieved, indicating a specific interaction between sLDL and the U937 LDL receptor are possible. U937 proliferation is reduced by the addition of an anti-LDL receptor antibody, indicating that sLDL is assimilated via the LDL receptor pathway. The behavior of sLDL mimics that of native LDL, and this approach represents a viable technique for the production of an sLDL particle on a large scale for research and general application

    Investigation of an 11 mm diameter twin screw granulator: Screw element performance and in-line monitoring via image analysis

    Get PDF
    As twin screw granulation (TSG) provides one with many screw element options, characterization of each screw element is crucial in optimizing the screw configuration in order to obtain desired granule attributes. In this study, the performance of two different screw elements - distributive feed screws and kneading elements - was studied in an 11 mm TSG at different liquid-to-solid (L/S) ratios. The kneading element configuration was found to break large granules more efficiently, leading to narrower granule size distributions. While pharmaceutical industry shifts toward continuous manufacturing, inline monitoring and process control are gaining importance. Granules from an 11 mm TSG were analysed using the Eyeconℱ, a real-time high speed direct imaging system, which has been used to capture accurate particle size distribution and particle count. The size parameters and particle count were then assessed in terms of their ability to be a suitable control measure using the Shewhart control charts. d10 and particle count were found to be good indicators of the change in L/S ratio. However, d50 and d90 did not reflect the change, due to their inherent variability even when the process is at steady state
    corecore