117 research outputs found

    Fingolimod in a patient with heart failure on the background of pulmonary arterial hypertension and coronary artery disease

    Get PDF
    Background: Fingolimod is the first oral immunomodulatory therapy approved for highly active relapsing remitting multiple sclerosis. Based on the distribution pattern of fingolimod interacting sphingosine-1-phosphat receptors in organism including immune system and cardiovascular system clinical monitoring of patients and evaluation of adverse events are recommended. Despite extensive data on cardiovascular safety, experience with fingolimod in patients with concomitant cardiological disease, especially within the pulmonary circulation, is rare. Case presentation: We report the case of a 46-year-old woman presented with relapsing remitting multiple sclerosis and severe idiopathic pulmonary arterial hypertension. Fingolimod was initiated because of disease activity of multiple sclerosis with two relapses and gadolinium-enhancing lesions in MRI. The patient demonstrated stable disease course of idiopathic pulmonary arterial hypertension when fingolimod was started. Fingolimod therapy did not alter or even worsen the pulmonary or cardiovascular conditions during first dose application as well as follow up of nine months. Conclusion: In this report, we present the first case of fingolimod treatment in a patient with highly active multiple sclerosis and severe idiopathic pulmonary arterial hypertension. We suggest an interdisciplinary approach with detailed cardiopulmonary monitoring for safety in such patients

    Practical management of riociguat in patients with pulmonary arterial hypertension

    Get PDF
    Riociguat is one of several approved therapies available for patients with pulmonary arterial hypertension (PAH). Treatment should be initiated and monitored at an expert center by a physician experienced in treating PAH, and the dose adjusted in the absence of signs and symptoms of hypotension. In certain populations, including patients with hepatic or renal impairment, the elderly, and smokers, riociguat exposure may differ, and dose adjustments should therefore be made with caution according to the established scheme. Common adverse events are often easily managed, particularly if they are discussed before starting therapy. Combination therapy with riociguat and other PAH-targeted agents is feasible and generally well tolerated, although the coadministration of phosphodiesterase type 5 inhibitors (PDE5i) and riociguat is contraindicated. An open-label, randomized study is currently ongoing to assess whether patients who do not achieve treatment goals while receiving PDE5i may benefit from switching to riociguat. In this review, we provide a clinical view on the practical management of patients with PAH receiving riociguat, with a focus on the opinions and personal experience of the authors. The reviews of this paper are available via the supplemental material section

    Long-term effects of intravenous iloprost in patients with idiopathic pulmonary arterial hypertension deteriorating on non-parenteral therapy

    Get PDF
    Background: The majority of patients with idiopathic pulmonary arterial hypertension (IPAH) in functional classes II and III are currently being treated with non-parenteral therapies, including endothelin receptor antagonists (ERA), phosphodiesterase (PDE)-5 inhibitors, inhaled iloprost or combinations of these substances. If these treatments fail, current guidelines recommend the addition of parenteral prostanoid therapy. There is, however, limited evidence for the efficacy of parenteral prostanoids when added to combinations of non-parenteral therapies. Methods: In this retrospective, multicentre study we collected data from consecutive IPAH patients receiving intravenous iloprost in addition to optimized non-parenteral therapy between Jan 2002 and Dec 2009. Analyses included 6 min walk distance (6MWD), functional class, need for transplantation, and survival. Results: During the observation period, 50 patients were treated with intravenous iloprost in addition to non-parenteral therapy; 44% of the patients were on dual combination therapy and 52% on triple combination. Three months after initiation of iloprost, functional class had improved in 24% of the patients and the median 6MWD had increased from 289 m to 298 m (n.s.). During the observation period, 22 patients (44%) died and 14 (28%) underwent lung transplantation. The probabilities of LuTx-free survival at 1, 3 and 5 years following iloprost initiation were 38%, 17% and 17%, respectively. A 6MWD < 300 m and persistent functional class IV at 3 months after initiation of intravenous iloprost were predictors of an adverse outcome. Conclusion: In essence, late initiation of intravenous iloprost in IPAH patients who previously failed to respond to non-parenteral therapies appears to be of limited efficacy in the majority patients. Alternative therapeutic options are currently not available, underlying the need for the development of new drugs

    Trends in COVID-19-associated mortality in patients with pulmonary hypertension: a COMPERA analysis

    Full text link
    In patients with pulmonary hypertension, the mortality rate associated with COVID-19 has declined sharply with the emergence of the Omicron variants https://bit.ly/42OMsf

    Myeloproliferative Diseases as Possible Risk Factor for Development of Chronic Thromboembolic Pulmonary Hypertension—A Genetic Study

    Get PDF
    Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare disease which is often caused by recurrent emboli. These are also frequently found in patients with myeloproliferative diseases. While myeloproliferative diseases can be caused by gene defects, the genetic predisposition to CTEPH is largely unexplored. Therefore, the objective of this study was to analyse these genes and further genes involved in pulmonary hypertension in CTEPH patients. A systematic screening was conducted for pathogenic variants using a gene panel based on next generation sequencing. CTEPH was diagnosed according to current guidelines. In this study, out of 40 CTEPH patients 4 (10%) carried pathogenic variants. One patient had a nonsense variant (c.2071A>T p.Lys691*) in the BMPR2 gene and three further patients carried the same pathogenic variant (missense variant, c.1849G>T p.Val617Phe) in the Janus kinase 2 (JAK2) gene. The latter led to a myeloproliferative disease in each patient. The prevalence of this JAK2 variant was significantly higher than expected (p < 0.0001). CTEPH patients may have a genetic predisposition more often than previously thought. The predisposition for myeloproliferative diseases could be an additional risk factor for CTEPH development. Thus, clinical screening for myeloproliferative diseases and genetic testing may be considered also for CTEPH patients

    Riociguat for pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: Results from a phase II long-term extension study

    Get PDF
    Background: Riociguat was well tolerated and improved exercise and functional capacity in patients with pulmonary arterial hypertension (PAH) and inoperable chronic thromboembolic pulmonary hypertension (CTEPH) in a 12 -week Phase II trial. We present final data from the long-term extension phase of this study. Methods: During this multicenter, open-label, uncontrolled long-term extension study, riociguat dose could be changed at the physician's discretion (range 0.5-2.5 mg three times daily). The primary outcome was long-term safety and tolerability of riociguat;secondary outcomes included 6-minute walking distance, World Health Organization functional class, survival, and clinical worsening-free survival. Results: Sixty-eight patients (inoperable CTEPH, n = 41;PAH, n = 27) entered the long-term extension. Median treatment duration at the final data cut-off was 77 months. The most common adverse events were nasopharyngitis (57%) and peripheral edema (37%). Three patients (4%) experienced serious adverse events of hemoptysis: two moderate, one severe, none fatal or considered drug-related. At Month 48, 6-minute walking distace increased from baseline by 69 +/- 105 m, and World Health Organization functional class improved/stabilized/worsened versus baseline in 50/45/5% of patients. Three-year survival and clinical worsening-free survival were 91% and 49%, respectively (with patients censored if they withdrew without experiencing an event). Starting a new PAH treatment was the most frequent clinical worsening event. Conclusions: Improvements in exercise and functional capacity were maintained at 4 years in patients remaining on treatment, with no new safety signals identified. These data support riociguat as a long-term treatment option for PAH and inoperable CTEPH. Trial registered at: ClinicalTrials.gov. Registration number: NCT00454558

    Pulmonary Hypertension in Patients With COPD : Results From the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA)

    Get PDF
    Funding Information: FUNDING/SUPPORT: This work was supported by the German Center of Lung Research (DZL). COMPERA is funded by unrestricted grants from Acceleron , Actelion Pharmaceuticals , Bayer , OMT , and GSK . Funding Information: Financial/nonfinancial disclosures: The authors have reported to CHEST the following: C. D. V. has received fees for serving as a speaker, consultant, and an advisory board member from the following companies: Acceleron, Actelion, Bayer, Dompè, GSK, Janssen, MSD, Pfizer, and United Therapeutics. M. M. H. has received speaker fees, honoraria, or both for consultations from Acceleron, Actelion, Bayer, Janssen, MSD, and Pfizer. D. H. has received travel compensation from Actelion, Boehringer-Ingelheim, and Shire. D. P. has received fees for consultations from Actelion, Aspen, Biogen, Bayer, Boehringer Ingelheim, Johnson & Johnson, Novartis, Daiichi Sankyo, Sanofi, and Pfizer. N. B. received speaker fees from Bayer/MSD and Actelion/Janssen. K. M. O. has received speaker fees from Actelion, Bayer, and Lilly. H. A. G. has received honorariums for consultations, speaking at conferences, or both from Bayer HealthCare AG, Actelion, Encysive, Pfizer, Ergonex, Lilly, and Novartis. He is member of advisory boards for Bayer HealthCare AG, Pfizer, GSK, Actelion, Lilly, Merck, Encysive, and Ergonex. He also has received governmental grants from the German Research Foundation (DFG), Excellence Cluster Cardiopulmonary Research (ECCPS), State Government of Hessen (LOEWE), and the German Ministry for Education and Research (BMBF). M. Held has received speaker fees and honoraria for consultations from Actelion, Bayer, Boehringer Ingelheim Pharma, Encysive, Glaxo Smith Kline, Lilly, Janssen, Novartis, Pfizer, Nycomed, Roche, and Servier. H. K. has received speaker fees and honoraria for consultations from Actelion, Bayer, GSK, Lilly, Novartis, Pfizer, and United Therapeutics and research grants from Actelion. T. J. L. has received speaker fees, honoraria for consultations, and research funding from Actelion, Acceleron Pharma, Bayer, GSK, Janssen-Cilag, MSD, and Pfizer. S. R. has received honoraria for lectures, consultancy, or both from Actavis, Actelion, Bayer, GSK, Lilly, Novartis, Pfizer, and United Therapeutics. D. D. declares honoraria for lectures, consultancy, or both from Actelion, Bayer, GSK, Novartis, Pfizer, and Servier; participation in clinical trials for Actelion, Bayer, GSK, and Novartis; and research support to his institution from Actelion. R. B. has received fees from GSK, UT, Dompè, Bayer, Ferrer, MSD, and AOP Orphan Pharmaceuticals. M. C. has received fees for consulting from GSK and speaker fees from Bayer and Pfizer. M. Halank has received speaker fees and/or honoraria for consultations from Acceleron, Actelion, AstraZeneca, Bayer, BayerChemie, GSK, Janssen, MSD and Novartis. A. V.-N. reports receiving lecture fees from Actelion, Bayer, GlaxoSmithKline, Lilly, and Pfizer; serves on the advisory board of Actelion and Bayer; and serves on steering committees for Actelion, Bayer, GlaxoSmithKline, and Pfizer. D. S. received fees for lectures, consulting, research support, or a combination thereof to his institution from Actelion, Bayer, GSK, and Pfizer. R. E. has received speaker fees and honoraria for consultations from Actelion, Bayer, GSK, Lilly, Novartis, Pfizer, and United Therapeutics. J. S. R. G. has received speaker fees and honoraria for consultations from Acceleron, Actelion, Bayer, Complexa, GSK, MSD, Pfizer, and United Therapeutics. M. D. has received investigator, speaker, consultant, or steering committee member fees from Actelion, Aventis Pharmaceuticals, Bayer, Eli Lilly, Encysive, Gilead (Myogen), GlaxoSmithKline, Nippon Shyniaku, Novartis, Pfizer, Schering, and United Therapeutics; educational grants from Actelion, GlaxoSmithKline, Pfizer, and Therabel; and research grants from Actelion, Pfizer, and GlaxoSmithKline. She is holder of the Actelion Chair for Pulmonary Hypertension and of the GSK chair for research and education in pulmonary vascular pathology at the Catholic University of Leuven. J. C. has received fees for consultancies and lectures from Actelion, Bayer, GSK, United Therapeutics, and Pfizer as well as equipment and educational grants from Actelion. C. O. has received speaker fees and honoraria for consultations from Actelion, Bayer, GSK, Lilly, Novartis, and Pfizer. H. K. has received honoraria for lectures, consultancy, or both from Actelion-Janssen, Amicus Therapeutics, and Bristol Meyers Squibb. O. D. has or had consultancy relationships, has received research funding (last 3 years), or both from AbbVie, Actelion, Acceleron Pharma, Amgen, AnaMar, Baecon Discovery, Blade Therapeutics, Bayer, Boehringer Ingelheim, Catenion, Competitive Corpus, Drug Development International Ltd, CSL Behring, ChemomAb, Ergonex, Galapagos NV, Glenmark Pharmaceuticals, GSK, Horizon (Curzion) Pharmaceuticals, Inventiva, Italfarmaco, iQone, iQvia, Kymera Therapeutics, Lilly, medac, Medscape, Mitsubishi Tanabe Pharma, MSD, Novartis, Pfizer, Roche, Sanofi, Target Bio Science, and UCB in the area of potential treatments of scleroderma and its complications including PH. In addition, he has a patent mir-29 for the treatment of systemic sclerosis issued (US8247389, EP2331143). E. G. has received honoraria for consultations, speaking at conferences, or both from Bayer/MSD, Actelion/Janssen, GWT-TUD, and OMT/United Therapeutics. None declared (A. S.). Publisher Copyright: © 2021 The AuthorsBackground: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition. Research Question: Which factors determine the outcome of PH in COPD? Study Design and Methods: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH). Results: The population included incident patients with moderate PH in COPD (n = 68), with severe PH in COPD (n = 307), and with IPAH (n = 489). Patients with PH in COPD were older, predominantly male, and treated mainly with phosphodiesterase-5 inhibitors. Despite similar hemodynamic impairment, patients with PH in COPD achieved a worse 6-min walking distance (6MWD) and showed a more advanced World Health Organization functional class (WHO FC). Transplant-free survival rates at 1, 3, and 5 years were higher in the IPAH group than in the PH in COPD group (IPAH: 94%, 75%, and 55% vs PH in COPD: 86%, 55%, and 38%; P = .004). Risk factors for poor outcomes in PH in COPD were male sex, low 6MWD, and high pulmonary vascular resistance (PVR). In patients with severe PH in COPD, improvements in 6MWD by ≥ 30 m or improvements in WHO FC after initiation of medical therapy were associated with better outcomes. Interpretation: Patients with PH in COPD were functionally more impaired and had a poorer outcome than patients with IPAH. Predictors of death in the PH in COPD group were sex, 6MWD, and PVR. Our data raise the hypothesis that some patients with severe PH in COPD may benefit from PH treatment. Randomized controlled studies are necessary to explore this hypothesis further. Trial Registry: ClinicalTrials.gov; No.: NCT01347216; URL: www.clinicaltrials.govpublishersversionPeer reviewe

    Chronic thromboembolic pulmonary hypertension and impairment after pulmonary embolism: the FOCUS study

    Full text link
    AIMS: To systematically assess late outcomes of acute pulmonary embolism (PE) and to investigate the clinical implications of post-PE impairment (PPEI) fulfilling prospectively defined criteria. METHODS AND RESULTS: A prospective multicentre observational cohort study was conducted in 17 large-volume centres across Germany. Adult consecutive patients with confirmed acute symptomatic PE were followed with a standardized assessment plan and pre-defined visits at 3, 12, and 24 months. The co-primary outcomes were (i) diagnosis of chronic thromboembolic pulmonary hypertension (CTEPH), and (ii) PPEI, a combination of persistent or worsening clinical, functional, biochemical, and imaging parameters during follow-up. A total of 1017 patients (45% women, median age 64 years) were included in the primary analysis. They were followed for a median duration of 732 days after PE diagnosis. The CTEPH was diagnosed in 16 (1.6%) patients, after a median of 129 days; the estimated 2-year cumulative incidence was 2.3% (1.2-4.4%). Overall, 880 patients were evaluable for PPEI; the 2-year cumulative incidence was 16.0% (95% confidence interval 12.8-20.8%). The PPEI helped to identify 15 of the 16 patients diagnosed with CTEPH during follow-up (hazard ratio for CTEPH vs. no CTEPH 393; 95% confidence interval 73-2119). Patients with PPEI had a higher risk of re-hospitalization and death as well as worse quality of life compared with those without PPEI. CONCLUSION: In this prospective study, the cumulative 2-year incidence of CTEPH was 2.3%, but PPEI diagnosed by standardized criteria was frequent. Our findings support systematic follow-up of patients after acute PE and may help to optimize guideline recommendations and algorithms for post-PE care
    corecore