11 research outputs found

    Distinct functional domains of neurofibromatosis type 1 regulate immediate versus long-term memory formation

    Get PDF
    Neurofibromatosis type 1 (NF1) is a dominant genetic disorder that causes tumors of the peripheral nervous system. In addition, >40% of afflicted children have learning difficulties. The NF1 protein contains a highly conserved GTPase-activating protein domain that inhibits Ras activity, and the C-terminal region regulates cAMP levels via G-protein-dependent activation of adenylyl cyclase. Behavioral analysis indicates that learning is disrupted in both Drosophila and mouse NF1 models. Our previous work has shown that defective cAMP signaling leads to the learning phenotype in Drosophila Nf1 mutants. In the present report, our experiments showed that in addition to learning, long-term memory was also abolished in Nf1 mutants. However, altered NF1-regulated Ras activity is responsible for this defect rather than altered cAMP levels. Furthermore, by expressing clinically relevant human NF1 mutations and deletions in Drosophila Nf1-null mutants, we demonstrated that the GAP-related domain of NF1 was necessary and sufficient for long-term memory, whereas the C-terminal domain of NF1 was essential for immediate memory. Thus, we show that two separate functional domains of the same protein can participate independently in the formation of two distinct memory components

    Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2+ imaging

    Get PDF
    To study the representation of olfactory information in higher brain centers, we expressed a green fluorescent protein-based Ca2+ sensor, G-CaMP, in the Drosophila mushroom body (MB). Using two-photon microscopy, we imaged odor-evoked G-CaMP fluorescence transients in MB neurons [Kenyon cells (KCs)] with single-cell resolution. Odors produced large fluorescence transients in a subset of KC somata and in restricted regions of the calyx, the neuropil of the MB. In different KCs, odor-evoked fluorescence transients showed diverse changes with odor concentration: in some KCs, fluorescence transients were evoked by an odor at concentrations spanning several orders of magnitude, whereas in others only at a narrow concentration range. Different odors produced fluorescence transients in different subsets of KCs. The spatial distributions of KCs showing fluorescence transients evoked by a given odor were similar across individuals. For some odors, individual KCs with fluorescence transients evoked by a particular odor could be found in similar locations in different flies with spatial precisions on the order of the size of KC somata. These results indicate that odor-evoked activity can have remarkable spatial specificity in the MB

    SMASH, a fragmentation and sequencing method for genomic copy number analysis

    Get PDF
    Copy number variants (CNVs) underlie a significant amount of genetic diversity and disease. CNVs can be detected by a number of means, including chromosomal microarray analysis (CMA) and whole-genome sequencing (WGS), but these approaches suffer from either limited resolution (CMA) or are highly expensive for routine screening (both CMA and WGS). As an alternative, we have developed a next-generation sequencing-based method for CNV analysis termed SMASH, for short multiply aggregated sequence homologies. SMASH utilizes random fragmentation of input genomic DNA to create chimeric sequence reads, from which multiple mappable tags can be parsed using maximal almost-unique matches (MAMs). The SMASH tags are then binned and segmented, generating a profile of genomic copy number at the desired resolution. Because fewer reads are necessary relative to WGS to give accurate CNV data, SMASH libraries can be highly multiplexed, allowing large numbers of individuals to be analyzed at low cost. Increased genomic resolution can be achieved by sequencing to higher depth

    DNA copy number variations in children with vesicoureteral reflux and urinary tract infections

    Get PDF
    Vesicoureteral reflux (VUR) is a complex, heritable disorder. Genome-wide linkage analyses of families affected by VUR have revealed multiple genomic loci linked to VUR. These loci normally harbor a number of genes whose biologically functional variant is yet to be identified. DNA copy number variations (CNVs) have not been extensively studied at high resolution in VUR patients. In this study, we performed array comparative genomic hybridization (aCGH) on a cohort of patients with a history of both VUR and urinary tract infection (UTI) with the objective of identifying genetic variations responsible for VUR and/or UTI susceptibility. UTI/VUR-associated CNVs were identified by aCGH results from the 192 Randomized Intervention for Children With Vesicoureteral Reflux (RIVUR) patients compared to 683 controls. Rare, large CNVs that are likely pathogenic and lead to VUR development were identified using stringent analysis criteria. Because UTI is a common affliction with multiple risk factors, we utilized standard analysis to identify potential disease-modifying CNVs that can contribute to UTI risk. Gene ontology analysis identified that CNVs in innate immunity and development genes were enriched in RIVUR patients. CNVs affecting innate immune genes may contribute to UTI susceptibility in VUR patients and may provide the first step in assisting clinical medicine in determining adverse outcome risk in children with VUR

    Aβ42 Mutants with Different Aggregation Profiles Induce Distinct Pathologies in Drosophila

    Get PDF
    Aggregation of the amyloid-β-42 (Aβ42) peptide in the brain parenchyma is a pathological hallmark of Alzheimer's disease (AD), and the prevention of Aβ aggregation has been proposed as a therapeutic intervention in AD. However, recent reports indicate that Aβ can form several different prefibrillar and fibrillar aggregates and that each aggregate may confer different pathogenic effects, suggesting that manipulation of Aβ42 aggregation may not only quantitatively but also qualitatively modify brain pathology. Here, we compare the pathogenicity of human Aβ42 mutants with differing tendencies to aggregate. We examined the aggregation-prone, EOFAD-related Arctic mutation (Aβ42Arc) and an artificial mutation (Aβ42art) that is known to suppress aggregation and toxicity of Aβ42 in vitro. In the Drosophila brain, Aβ42Arc formed more oligomers and deposits than did wild type Aβ42, while Aβ42art formed fewer oligomers and deposits. The severity of locomotor dysfunction and premature death positively correlated with the aggregation tendencies of Aβ peptides. Surprisingly, however, Aβ42art caused earlier onset of memory defects than Aβ42. More remarkably, each Aβ induced qualitatively different pathologies. Aβ42Arc caused greater neuron loss than did Aβ42, while Aβ42art flies showed the strongest neurite degeneration. This pattern of degeneration coincides with the distribution of Thioflavin S-stained Aβ aggregates: Aβ42Arc formed large deposits in the cell body, Aβ42art accumulated preferentially in the neurites, while Aβ42 accumulated in both locations. Our results demonstrate that manipulation of the aggregation propensity of Aβ42 does not simply change the level of toxicity, but can also result in qualitative shifts in the pathology induced in vivo

    Utility of single cell genomics in diagnostic evaluation of prostate cancer

    No full text
    A distinction between indolent and aggressive disease is a major challenge in diagnostics of prostate cancer. As genetic heterogeneity and complexity may influence clinical outcome, we have initiated studies on single tumor cell genomics. In this study, we demonstrate that sparse DNA sequencing of single cell nuclei from prostate core biopsies is a rich source of quantitative parameters for evaluating neoplastic growth and aggressiveness. These include the presence of clonal populations, the phylogenetic structure of those populations, the degree of the complexity of copy number changes in those populations, and measures of the proportion of cells with clonal copy number signatures. The parameters all showed good correlation to the measure of prostatic malignancy, the Gleason score, derived from individual prostate biopsy tissue cores. Remarkably, a more accurate histopathological measure of malignancy, the surgical Gleason score, agrees better with these genomic parameters of diagnostic biopsy than it does with the diagnostic Gleason score and related measures of diagnostic histopathology. This is highly relevant since primary treatment decisions are dependent upon the biopsy and not the surgical specimen. Thus, single cell analysis has the potential to augment traditional core histopathology, improving both the objectivity and accuracy of risk assessment and inform treatment decisions

    De Novo Gene Disruptions in Children on the Autistic Spectrum

    No full text
    Exome sequencing of 343 families, each with a single child on the autism spectrum and at least one unaffected sibling, reveal de novo small indels and point substitutions, which come mostly from the paternal line in an age-dependent manner. We do not see significantly greater numbers of de novo missense mutations in affected versus unaffected children, but gene-disrupting mutations (nonsense, splice site, and frame shifts) are twice as frequent, 59 to 28. Based on this differential and the number of recurrent and total targets of gene disruption found in our and similar studies, we estimate between 350 and 400 autism susceptibility genes. Many of the disrupted genes in these studies are associated with the fragile X protein, FMRP, reinforcing links between autism and synaptic plasticity. We find FMRP-associated genes are under greater purifying selection than the remainder of genes and suggest they are especially dosage-sensitive targets of cognitive disorders

    The contribution of de novo coding mutations to autism spectrum disorder

    No full text
    Whole exome sequencing has proven to be a powerful tool for understanding the genetic architecture of human disease. Here we apply it to more than 2,500 simplex families, each having a child with an autistic spectrum disorder. By comparing affected to unaffected siblings, we show that 13% of de novo missense mutations and 43% of de novo likely gene-disrupting (LGD) mutations contribute to 12% and 9% of diagnoses, respectively. Including copy number variants, coding de novo mutations contribute to about 30% of all simplex and 45% of female diagnoses. Almost all LGD mutations occur opposite wild-type alleles. LGD targets in affected females significantly overlap the targets in males of lower intelligence quotient (IQ), but neither overlaps significantly with targets in males of higher IQ. We estimate that LGD mutation in about 400 genes can contribute to the joint class of affected females and males of lower IQ, with an overlapping and similar number of genes vulnerable to contributory missense mutation. LGD targets in the joint class overlap with published targets for intellectual disability and schizophrenia, and are enriched for chromatin modifiers, FMRP-associated genes and embryonically expressed genes. Most of the significance for the latter comes from affected females
    corecore