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Abstract

Vesicoureteral reflux (VUR) is a complex, heritable disorder. Genome-wide linkage analyses

of families affected by VUR have revealed multiple genomic loci linked to VUR. These loci

normally harbor a number of genes whose biologically functional variant is yet to be identified.

DNA copy number variations (CNVs) have not been extensively studied at high resolution in

VUR patients. In this study, we performed array comparative genomic hybridization (aCGH)

on a cohort of patients with a history of both VUR and urinary tract infection (UTI) with the

objective of identifying genetic variations responsible for VUR and/or UTI susceptibility. UTI/

VUR-associated CNVs were identified by aCGH results from the 192 Randomized Interven-

tion for Children With Vesicoureteral Reflux (RIVUR) patients compared to 683 controls.

Rare, large CNVs that are likely pathogenic and lead to VUR development were identified

using stringent analysis criteria. Because UTI is a common affliction with multiple risk factors,

we utilized standard analysis to identify potential disease-modifying CNVs that can contribute

to UTI risk. Gene ontology analysis identified that CNVs in innate immunity and development

genes were enriched in RIVUR patients. CNVs affecting innate immune genes may contrib-

ute to UTI susceptibility in VUR patients and may provide the first step in assisting clinical

medicine in determining adverse outcome risk in children with VUR.

Introduction

Primary vesiocoureteral reflux (VUR), characterized by retrograde flow of urine from the blad-

der to the ureter, affects 1–2% of children[1]. VUR is associated with renal scarring risk, hyper-

tension and chronic kidney disease secondary to recurrent urinary tract infections (UTIs),
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which only affect a subset of children [2, 3]. Multiple VUR management recommendations

exist but are largely limited to imaging and do not offer insight into treatment strategies to

maximize benefit while limiting risks. Clearly, an increased understanding of factors that pre-

dispose some VUR patients to complications is needed.

The Randomized Intervention for Children with Vesicoureteral Reflux (RIVUR) trial ran-

domized children with a history of UTI and VUR to daily antibiotic prophylaxis (AP) or pla-

cebo and followed them for two years to monitor for UTI recurrence risk[4]. Daily AP

reduced the risk of UTI in children with VUR by almost 50% [4].

VUR is a heritable condition. One third of siblings of children with VUR will also have the

condition [2]. Additionally, conditions associated with VUR complications such as recurrent

UTI and pyelonephritis also present in familial patterns suggesting that VUR and recurrent

UTIs may involve multiple overlapping genetic loci [5]. Although past studies have identified

genetic variations responsible for a small subset of mostly syndromic VUR patients, the major-

ity genetic variations responsible for primary VUR remains unknown [1, 6, 7]. Therefore,

VUR is a complex genetic condition. Additionally, genetic analysis has not included traits

linked to VUR sequelae such as UTI susceptibility.

Copy number variations (CNV) represent structural genomic variations comprising chro-

mosomal segments that deviate from classic Mendelian diploid gene numbers [8]. Hundreds

of CNVs have been identified that cause differential gene expression. Due to their ability to

exert gene dosage-dependent effects, CNVs have been linked to structural kidney disease and

infectious diseases [9–11].

Because VUR severity and UTI burden are variable, we hypothesized that CNVs in path-

ways critical to innate immunity and renal development will segregate with distinct clinical

outcomes and phenotypes in VUR patients. We used high-resolution array comparative geno-

mic hybridization (aCGH)-based genetic analysis to determine the CNV profile of children

from The Randomized Intervention for Children with Vesicoureteral Reflux (RIVUR) trial

with VUR and UTI and compared to race/gender-matched controls.

Results

CNV calls and filtering results

We performed high-resolution genome-wide aCGH arrays on 192 RIVUR patients and com-

pared the results to 683 gender/race/ethnicity-matched controls (S1 Fig). To identify VUR

and UTI associated CNVs, we assessed the CNV frequencies in genomic DNA using standard

and stringent CNV calling criteria and results filtering (Fig 1). Because VUR is a relatively

common disorder (1–2% of population) and UTIs are even more common, we utilized two

different analysis methods in this study. Standard methodology resulted in a comprehensive

candidate list, but difficult to interpret clinical relevance. We further utilized stringent analysis

to look for strongly significant “true positive” candidates at the expense of eliminating some

candidates that may be clinically relevant.

The majority of the rare CNVs in VUR and UTI were less than 10kb and

were gain events.

Our stringent analysis resulted in identification of 85 significantly altered chromosomal

regions with differential CNV frequencies (Fig 1). The sizes of these rare CNVs detected by

aCGH have a median CNV size of 7,770 bp (S2A Fig). Among all the CNVs, 47.1% represent

copy number loss (S2B Fig). The chromosomal locations and size distribution of the rare

CNVs were analyzed and shown in Fig 2A and 2B. Additionally, among all the gene-affecting

DNA copy number variations in RIVUR patients
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Fig 1. CNV calling, analysis, filtering methodology and results. In addition to GC waviness correction and log2 ratio filtering, we applied a

rigid quality control pipeline at sample, CNV and annotation levels to identify disease-associated CNV candidates. In particular, the results of

the SMASH sequencing of the two reference genomes (Reference-specific CNV filter I) as well as the CNV frequencies among the two

control cohorts whose genomes were interrogated using the same Nimblegen platform (Reference-specific CNV filter II) were used to

determine the reference genome-specific CNVs. Furthermore, the array-specific CNV filter directly compared the probe maps of both the

Nimblegen HD2 2.1M and Agilent 1M CHG arrays, and selected regions that contain the common probe coverage area for further CNV

comparisons. These procedures ensure that the quality of our analysis at overall genome level is not systematically interfered with the

potential bias that would occur with the different reference samples and CGH detection platforms used in this study.

https://doi.org/10.1371/journal.pone.0220617.g001
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CNVs, 61.8% were found to intersect genomic regions that encode protein sequences. The

remaining non-coding region encompassed genetic components including antisense (9.9%),

long intergenic non-coding RNA (lincRNA) (8.8%), pseudogene (7.7%), non-coding RNA

(5.5%), etc (Fig 2C and S1 Table).

Within the significantly altered CNVs (adjusted P-value< 0.05, based on a FDR adjustment

for multiple testing), 85 candidate CNVs affecting 141 genes (S2 Table) passed our quality

control filtering under the stringent analysis criteria. S3 Fig shows the top 20 most significantly

altered rare CNVs and their affected genes in RIVUR patients versus controls. Among all the

differentially altered CNVs, the chromosomal locus–chr12:11,215,990–11,217,836, is the top

ranked CNV region harboring a 1.84-kb DNA segment of copy number gain. We detected this

CNV in 33 (17.1%) of the RIVUR patients as compared with 0 controls, showing a significant

enrichment (adjusted P = 4.84 x 10−21). This region harbors Proline Rich Protein HaeIII Sub-

family 1 (PRH1) and two readthrough genes, PRH1-PRR4 and PRH1-TAS2R14.
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Fig 2. Rare candidate CNVs in RIVUR patients identified using stringent analysis criteria. (A) The genomic location of the rare candidate CNVs in RIVUR patients

is shown in the circular plot. The rare (frequency< = 1% of controls), significant CNVs were displayed in the inner circle. Only regions of copy number gain (blue) and

copy number loss (red) with significant adjusted P values are plotted. (B) The identified CNVs were categorized based on the CNV size range into difference size bins,

and the percentage of CNVs in each bin are shown in the pie chart. (C) Pie chart reflects type of genic region spanned by CNVs. A large proportion of the identified

CNVs intersect genic regions that encode for proteins.

https://doi.org/10.1371/journal.pone.0220617.g002
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Biological pathway analysis of CNVs demonstrate alterations in gene

pathways critical in lower urinary tract development.

To gain insight into the potential biological consequence of rare CNVs, we performed GO

pathway analysis of the candidate CNVs (S2 Table). The GO analysis revealed multiple enrich-

ments for developmental pathways. Of note, “regulation of Wnt signaling pathway”

(P = 0.0008) and “developmental growth involved in morphogenesis” (P = 0.018) are repre-

sented in this list. These pathways contain statistically significantly altered genes that have

known roles in kidney development and/or known causes of VUR. The complete GO pathway

analysis is presented in S3 Table. Additionally, we filtered our results against RefSeq for terms

consistent with kidney and lower urinary tract development (see complete methods). CNVs

with potential lower urinary tract development relevance involved multiple genes including

Fibroblast Growth Factor Receptor 3 (FGFR3) and Tenascin XB (TNXB) (Table 1 and S2

Table) [12–14]. Finally, we compared our results with previous linkage analysis studies in

VUR, and we identified six genes that overlap with genes identified by linkage analysis in other

VUR cohorts (Table 2) [6, 15–23].

Common CNVs in innate immune pathways may confer UTI susceptibility.

Unlike classic genetic studies, we also performed an analysis on “common” CNVs. We justify

this approach as UTIs are a common condition and multifactorial, thus multiple genes likely

contribute to innate defenses of the kidney and urinary tract. Our standard analysis resulted in

identification of multiple significantly altered chromosomal regions with differential CNV fre-

quencies (Fig 1, Fig 3 and S4 Table). Among all the disease-associated CNVs, ninety-two are

common disease-associated CNVs that may contribute to the spectrum of UTI burden (S5

Table). Thirty-four percent of these common CNVs were copy number loss events. Common

CNVs were smaller and less likely to be losses compared to rare CNVs (S4 Fig). S5 Fig shows

the top 20 most significantly altered comme and rare CNVs and their affected genes in RIVUR

patients versus controls.

CNVs in genes critical to innate immunity and epithelial structure/

function are significantly different in children with VUR/UTIs compared

to controls.

GO pathway analysis of common CNVs significantly associated with VUR/UTI based on

adjusted P values are presented in S5 Table. We have combined several similar pathways from

S6 Table to highlight statistically significant unique processes in Table 3. We identified path-

ways critical in collecting duct development, innate immune response and receptor signaling.

Furthermore, CNVs within enriched pathways included genes that encode antimicrobial

Table 1. Summary of selected, rare candidate genes with known roles in normal kidney development.

Symbol Name Event Freq_case (%) Freq_ctl (%)

TNXB tenascin XB CN Gain 10.4 0.1

ZNF595 zinc finger protein 595 CN Loss 2.1 0

DVL1 dishevelled segment polarity protein 1 CN Gain 1.6 0

MMP23B matrix metallopeptidase 23B CN Gain 1.6 0

PCSK4 proprotein convertase subtilisin/kexin type 4 CN Gain 1.6 0

SKI SKI proto-oncogene CN Gain 1.6 0

SLC34A3 solute carrier family 34 (type II sodium/phosphate cotransporter), member 3 CN Gain 1.6 0

FGFR3 fibroblast growth factor receptor 3 CN Gain 1.6 0

https://doi.org/10.1371/journal.pone.0220617.t001
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Table 2. Rare candidate genes in VUR susceptibitly loci identified by prior genetic analysis studies.

Chromosome Cytoband Population Study Affected genes

1 1q23.2-1q25.2 Ireland Kelly, 2007(17) RABGAP1L

1 1q25-1q41 Europe Sanna-Cherchi, 2013(23) CFH; RABGAP1L

2 2q37.2-2q37.3 Ireland Kelly, 2007(17) LINC01237

6 6q24.1-6q27 Ireland Kelly, 2007(17) AFDN

6 6q27 Slovenia Cordell, 2010(21) AFDN

10 10q25.2-10q26.3 Ireland Kelly, 2007(17) �DMBT1

10 10q26.13 Ireland Darlow, 2014(22) �DMBT1

11 11q14.1 UK/Slovenia Cordell, 2010(21) DLG2

�: Genes with > 5% CNV frequency in the RIVUR cohort.

https://doi.org/10.1371/journal.pone.0220617.t002
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Fig 3. Disease-associated CNVs in RIVUR patients identified using standard analysis criteria. (A) The genomic location of disease-associated CNVs in RIVUR

patients is shown in the circular plot. The common and rare (frequency< = 1% of controls) CNVs were displayed in the middle and inner circles, respectively. Only

regions of copy number gain (blue) and copy number loss (red) with significant adjusted P values are plotted. (B) The disease-associated, common and rare CNVs were

categorized based on the CNV size range into difference size bins, and the percentage of CNVs in each bin are shown in the pie charts. (C) Pie chart reflects type of genic

region spanned by CNVs.

https://doi.org/10.1371/journal.pone.0220617.g003
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peptides such as (Human alpha defensin 1–3, (DEFA1A3) and bacterial agglutins such as

Deleted in Malignant Brain Tumor 1 (DMBT1).

By searching RefSeq, we queried gene function of statistically significant CNV-associated

genes for known roles in innate immunity (S7 Table)(Comprehensive Methods for terms).

We identified CNVs with potential innate immune functions involved genes that involve cyto-

kines or chemokines such as Interleukin 11 (IL11), pattern recognition receptors such as Toll-

Like Receptor 9 (TLR9), and antimicrobial peptides such as azurocidin 1 (AZU1) [24, 25] (S7

Table).

Discussion

Previous studies have found VUR-associated genetic mutations in pedigrees of mostly syndro-

mic, patients, but these genetic variations have not been found in the vast majority of patients

with primary, nonsyndromic VUR [1, 7]. Multiple reasons exist for the limited identification

of gene defects responsible for VUR and include focus on SNPs as opposed to other types of

genetic mutations such as CNVs. Also because VUR without recurrent UTIs may not lead to

morbidities, it may be more clinically important to identify genetic factors that result in UTI

risk.

The Nimblegen HD2 and Agilent 1M feature arrays cover polymorphic regions often omit-

ted from conventional SNP arrays [26]. Prior VUR genetic studies often relied on elimination

of “common” genetic variations as the first step in data analysis. Because UTIs are common,

our analysis includes genetic variations for both common variations and rare variations. The

genes affected by common CNVs may influence UTI risk in the appropriate clinical context

such as bowel/bladder dysfunction and/or VUR. In future studies of newly diagnosed VUR

patients, these genes can be investigated to predict UTI risk and/or antibiotic efficacy. In fact,

one of our genes identified from our cohort was validated to show these exact associations,

Table 3. Summary of pathways involving common disease-associated CNVs.

Pathway (gene ontology) Overlap P-value Genes

neuromuscular junction development (GO:0007528)a 3/34 5.08E-04 DVL1;AGRN;PDZRN3

negative regulation of glial cell proliferation (GO:0060253)b 2/9 7.38E-04 NOTCH1;SOX11

spindle assembly involved in mitosis (GO:0090307)c 2/11 1.12E-03 OFD1;ARHGEF10

collecting duct development (GO:0072044) 2/11 1.12E-03 NOTCH1;DACT2

response to muramyl dipeptide (GO:0032495) 2/12 1.34E-03 NOTCH1;CARD9

extracellular matrix assembly (GO:0085029) 2/15 2.11E-03 THSD4;GPM6B

antibacterial humoral response (GO:0019731)d 2/26 6.33E-03 DMBT1;DEFA1

response to fungus (GO:0009620) 2/35 1.13E-02 CARD9;DEFA1

receptor clustering (GO:0043113) 2/36 1.19E-02 DVL1;AGRN

hematopoietic progenitor cell differentiation (GO:0002244) 3/106 1.29E-02 COL24A1;DACT2;DOCK1

cilium morphogenesis (GO:0060271) 2/50 2.22E-02 OFD1;NOTCH1

asame genes as synapse organization (GO:0050808); P-value 0.0146155
bsame genes with CNVs as cardiac ventricle formation (GO:0003211), cardiac chamber formation (GO:0003207), regula- tion of glial cell proliferation (GO:0060251),

morphogenesis of an epithelial sheet (GO:0002011), ventricular septum mor- phogenesis (GO:0060412), mesenchymal cell development (GO:0014031) positive

regulation of BMP signaling pathway (GO:0030513), stem cell development (GO:0048864), negative regulation of gliogenesis (GO:0014014), cardiac septum

morphogenesis (GO:0060411), skeletal muscle cell differentiation (GO:0035914); P-values 0.0011205–0.019785
csame genes as microtubule cytoskeleton organization involved in mitosis (GO:1902850, mitotic spindle organization (GO:0007052), spindle assembly (GO:0051225); P-

values 0.0018374–0.0138875
dsame genes as antimicrobial humoral response (GO:0019730); P-value 0.0073198

https://doi.org/10.1371/journal.pone.0220617.t003
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DEFA1A3. We have previously demonstrated renal collecting duct expression of DEFA1A3,

positively correlated DEFA1A3 copy number with expression levels [27]. We also demon-

strated that RIVUR patients have low DEFA1A3 copy number compared to age, sex and race/

ethnicity matched controls with no UTI history [27]. Furthermore, DEFA1A3 copy number

also was associated with antibiotic prophylaxis efficacy suggesting synergy with antibiotics. If

we had limited our analysis to only include the stringent CNV calls and filters, we would not

have identified this very important locus, which we have independently validated as a comple-

mentary study to this data presented [27].

Our stringent analysis identified 85 rare CNVs. While members of these families as well as

upstream or downstream signaling effectors have been studied in depth, many genes presented

are novel. Of note, cytoband 12p13.2 is the top ranked chromosomal region that harbors mul-

tiple significantly altered CNVs (S3 Fig). Interestingly, the genes affected by these CNVs

encompass a number of genes including PRH1, PRH1-PRR4 and PRH1-TAS2R14. The role of

these genes have not been investigated in kidney development. PRH1 is a parotid-specific gene

with importance in innate defenses in the mouth and genetic variations are associated with

risk for dental caries [28]. PRH1-TAS2R14 produces a fusion protein. TAS2R14 has been

shown to inhibit mast cell degranulation [29]. Mast cells have been shown in various UTI

models to be critical in bacterial clearance [30]. Because this is a gain event, conceivably one of

these genes could be critical in innate defenses of the kidney and urinary tract and further

investigation is warranted.

GO analysis was performed to determine biological processes enriched for CNV associated

genes in RIVUR patients. Many of the identified biological processes involved innate immu-

nity. Because enrollment in the RIVUR study required 1–2 documented UTIs, these innate

immune gene CNVs may represent a UTI risk factor in RIVUR patients compared to controls.

Key innate immune CNV genes identified in our analysis included DEFA1A3, DMBT1, and

CARD9. CARD9 is a critical adaptor protein for multiple innate immune processes and Toll-

like receptor signaling [31]. DMBT1 has been demonstrated to agglutinate Gram-positive and

Gram-negative bacteria [32].

Prior research has focused on the developmental cause of VUR, and a number of murine

models of VUR exist. These models indicate that the induction site of the ureteric bud during

early kidney development gives rise to an abnormally tunneled ureter in the bladder and a sub-

sequent faulty ureterovesical junction that leads to VUR [33]. Because gene dosage effects have

led to ureteric bud induction infidelities in murine models, CNVs serve as the ideal structural

genetic variation that could lead to the spectrum of VUR severity that we observe in children.

Additionally, more than half of our CNVs were copy number gain events. Because most ani-

mal studies or in vitro studies involve loss of function, the biological relevance of a copy num-

ber gain in many candidate genes is unknown. Studies using validatory in vivo vertebrate

models to upregulate these genes is needed to determine relevance. Of note, Tenascin XB

(TNXB) has previously been associated with VUR [14]. TNXB single nucleotide polymorphism

was postulated to be a gain-of-function event. Interestingly, in RIVUR, CNVs in TNXB pre-

dicted as coding sequence variants were gain events, which correlates with the previously

known genetic events.

In addition to TNXB1, we identified additional CNVs affecting genes that have been impli-

cated in lower urinary tract development. SRY-Box11(SOX11) has been reported to play a key

regulatory role in renal development and its disruption has been implicated in causing congen-

ital anomalies of the kidney and urinary tract [34]. Fibroblast Growth Factor (FGF) Receptor 3

is expressed during normal kidney development [33, 35]. NOTCH signaling is implicated in

Alagille syndrome which has a high rate of VUR, and we identified CNVs in NOTCH1 [36].

Dishevelled Segment Polarity Protein 1 (DVL1) is critical in WNT signaling during kidney
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development [37]. Additionally, Dishevelled Binding Antagonist of Beta Catenin 2 (DACT2)

was identified in our studied and has a known role in collecting duct development [38].

Finally, we have also identified genes and non-coding lncRNA and miRNAs that are novel,

and their roles in lower urinary tract development have yet to be investigated.

This study provides new insights into VUR/UTI pathophysiology, however we do acknowl-

edge some limitations. While our aCGH provides very high-resolution data, we used 2 differ-

ent aCGH platforms in a portion of the RIVUR patients due to commercial availability. We

have run a subset of the same samples on both platforms and confirmed that the Agilent array

does not detect additional CNVs found in the Nimblegen array. We did, however, demonstrate

that less CNVs are detected, which we postulate is secondary to the lower resolution of the

array. Additionally, the SFARI control cohort used a different reference genome. To account

for these analysis factors, we filtered results for both aCGH array type and reference genome.

We have also used SMASH sequencing to establish if any reference genome CNVs exist and fil-

tered our results accordingly. Because the immortalization process to create our DNA source

can result in differential genomic structural variations, we have filtered our results to exclude

regions implicated [39]. Finally, our control population is a group of unaffected mothers from

a cohort of probands with autism spectrum. While there are no known associations with VUR

and autism, we do acknowledge that this comparison group is not perfect. Because VUR

resolves over time and the rates of in utero VUR are unknown, we essentially cannot find a

“pure” comparison cohort that we are certain does not have a history of VUR even if a voiding

cystourethrogram was performed for reasons other than urinary tract abnormalities or UTI.

Development of a genetic panel to identify patients at risk for sequalae such as recurrent

UTI and subsequent renal scarring would help “low risk” children avoid unneeded antibiotics

and radiation exposure as well as select “high risk” patients for more aggressive treatment.

Because the initial step of using genetic profiles is to improve care of children with VUR, we

have identified several novel findings relevant to VUR/UTI pathophysiology including: 1)

VUR patients with a UTI history are more likely to have CNVs involving innate immune

genes compared to controls, 2) VUR patients with a UTI history are more likely to have CNVs

that involve ureteric bud/collecting duct development pathways than controls, and 3) aCGH

identified overlap between VUR loci identified in this study and prior linkage studies. Because

the clinical course of children with vesicoureteral reflux is what is critical in clinical practice,

determining those at risk for UTI is essential in managing children who are diagnosed with

vesicoureteral reflux. Results from our study will serve as the foundation to inform medical

decision-making and the first step in personalized medicine for this patient population.

Methods

For complete methods, please refer to the supporting information file (S1 File). The workflow

of the overall experimental design is outlined in S1 Fig. Approval on human subjects was

obtained by Nationwide Children’s Hospital Institutional Review Board (IRB) protocols

IRB07-00383 and IRB10-00319 and the University of Tennessee Health Science Center IRB

protocol 14-03325-XP. All clinical investigations were conducted according to the principles

expressed in the Declaration of Helsinki.

Subjects

RIVUR cohort (cases): Randomized Intervention for Children with Vesicoureteral Reflux

(RIVUR) Study (ClinicalTrials.gov Identifier NCT00405704): For complete study design and

outcome data, please refer to previously published materials and the supporting information

file (S1 File). [4, 40]. Briefly, this clinical trial enrolled 607 children aged 1–71 months with
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documented VUR by voiding cystourethrogram grades I-IV and have 1 but no more than 2

documented UTI’s.

SFARI cohort (controls): To use samples of unrelated individuals, we selected unaffected

mothers from families of Simons Foundation Autism Research Initiative (SFARI) cohort for

case-control comparison [41]. The SFARI is a scientific initiative within the Simons Founda-

tion that focuses on autism spectrum disorders (https://sfari.org). We collected results from

patients from the Simons-Simplex Collection whose DNA was analyzed with the Nimblegen

HD2 2.1 million probe microarray platform (3). The complex trait of idiopathic autism is not

related to any developmental or innate immunity phenotypes of VUR.

Local control cohort (controls): A total of 19, ethnicity/race-, sex- matched healthy controls

with no prior history of VUR or UTI served as the control group in this study. These 19 con-

trol subjects’ genomes were interrogated on the Nimblegen HD2 platform with the same refer-

ence genome as the RIVUR subjects. Additionally, these 19 ethnicity/race-, sex- matched local

healthy controls were also used for filtering purposes. Specifically, the SFARI cohort and our

local controls were interrogated on the same Nimblegen HD2 platform but with different ref-

erence genomes. In order to control for potential reference-specific CNVs, we compared the

CNV frequency difference between the 19 normal controls (which had the same reference as

the RIVUR samples) and the SFARI cohort. Whenever a 10% threshold of difference is identi-

fied, the involved CNV was labeled as dubious positive and excluded from all the downstream

analysis as it was most likely attributed to a reference genome CNV.

RIVUR vs Control comparison

For case-control comparison, the case group consists of 192 non-Hispanic, Caucasian females

from the RIVUR cohort. The control group is composed of 19 healthy controls as well as 664

unrelated sex and race/ethnicity matched samples from SFARI cohort.

Short multiply aggregated sequence homologies (SMASH) sequencing

We identified the copy number variants (CNVs) of reference DNA samples by SMASH [42]. A

detailed description of SMASH can be found in the supporting information file (S1 File).

aCGH arrays

For our DNA quantification as well as high-resolution aCGH methodology, please refer to our

previous work and the supporting information file (S1 File) [43].

Genome-wide CNV calls

The aCGH data was processed using Nexus 8 Copy Number software (Biodiscovery Inc, El

Segundo, CA). For specific copy calling parameters, please refer to the supporting information

file (S1 File).

Quality control and association analysis

We peformed filtering to standardize for array platform (Nimblegen vs. Agilent) and reference

DNA. In order to correct for the possible genomic changes in lymphoblastic cell line, we spe-

cifically filtered out genomic regions that harbor putative LCL-sepcific changes before further

analysis. (lymphoblastic cell line derived [39] vs. primary DNA). For a flow chart of the CNVs

calling criteria, analyses, filtering criteria as well as the data to demonstrate the effectiveness of

filtering, please refer to Fig 1 and the supporting information file (S1 File).
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CNV annotation and enrichment analysis

The CNVs were classified into common or rare (< 1% in controls) CNVs based on their fre-

quency in control group. The gene ontology enrichment pathway analysis were performed on

the selected candidate genes. The information of clinical significance and most severe effect

for each candidate CNV were retrieved from the ClinVar and the Ensemble Variant Effect Pre-

dictor databases, respectively.

Overlap analysis with previous VUR genetic studies

The rare candidate CNV-affected genes were mapped to the previously identified VUR suscep-

tibility loci [6, 15–23].

Supporting information

S1 Fig. Flowchart of experimental design.

(EPS)

S2 Fig. Characteristics of rare candidate CNVs identified using stringent criteria. (A)

shows the cumulative distribution of CNVs by size. (B) reflects the distribution of copy num-

ber (CN) gains versus CN losses of rare candidate CNVs identified using stringent analysis cri-

teria.

(EPS)

S3 Fig. The top 20 rare candidate CNVs and their affected genes identified using stringent

criteria. The frequency differences (bar) and the level of significance transformed as—log10

(P) are plotted. � indicates the adjusted—log10(P) values. The dashed black line shows where

the significant threshold (P = 0.05) lies.

(EPS)

S4 Fig. Characteristics of common versus rare disease-associated CNVs. (A) A higher total

percentage of common CNVs are smaller compared to rare CNVs using standard analysis cri-

teria.(B) A majority of common CNVs are gains, while the majority of rare CNVs are loss

events.

(EPS)

S5 Fig. The top 20 common (A) and rare (B) disease-associated CNVs and their affected

genes identified using standard criteria. The frequency differences (bar) and the level of sig-

nifi- cance transformed as—log10(P) are plotted. � indicates the adjusted—log10(P) values.

The dashed black line shows where the significant threshold (P = 0.05) lies.

(EPS)

S6 Fig. Example of segmentation and whole genome array plots. Panel A and B show that a

copy number loss or gain is detected within the DMBT1 orWWOX gene locus, respectively.

Panel C shows the entire genome with probes, a moving average line and colored chromo-

somes linked end to end.

(EPS)

S1 Table. Type of genic regions spanned by rare candidate CNVs identified using stringent

analysis criteria.

(DOCX)

DNA copy number variations in RIVUR patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0220617 August 12, 2019 11 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220617.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220617.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220617.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220617.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220617.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220617.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220617.s007
https://doi.org/10.1371/journal.pone.0220617


S2 Table. Summary of rare candidate CNVs and their affected genes identified using strin-

gent analysis criteria.

(XLSX)

S3 Table. Gene ontology enrichment analysis of rare candidate CNV-affected genes identi-

fied using stringent analysis criteria.

(XLSX)

S4 Table. Type of genic regions spanned by disease-associated CNVs identified using stan-

dard analysis criteria.

(DOCX)

S5 Table. Summary of disease-associated candidate genes and CNVs identified using stan-

dard analysis criteria.

(XLSX)

S6 Table. Gene ontology enrichment analysis of common candidate CNV-affected genes

identified using standard analysis criteria.

(XLSX)

S7 Table. Summary of selected disease-associated candidate genes with known roles in

innate immunity.

(DOCX)

S1 File. Comprehensive/supplemental materials and methods.

(DOC)
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