176 research outputs found

    A Novel Pinkish-White Flower Color Variant Is Caused by a New Allele of Flower Color Gene W1 in Wild Soybean (Glycine soja)

    Get PDF
    The enzyme flavonoid 3',5'-hydroxylase (F3'5'H) plays an important role in producing anthocyanin pigments in soybean. Loss of function of the W1 locus encoding F3'5'H always produces white flowers. However, few color variations have been reported in wild soybean. In the present study, we isolated a new color variant of wild soybean accession (IT261811) with pinkish-white flowers. We found that the flower's pinkish-white color is caused by w1-s3, a single recessive allele of W1. The SNP detected in the mutant caused amino acid substitution (A(304)S) in a highly conserved SRS4 domain of F3'5'H proteins. On the basis of the results of the protein variation effect analyzer (PROVEAN) tool, we suggest that this mutation may lead to hypofunctional F3'5'H activity rather than non-functional activity, which thereby results in its pinkish-white color

    Ammonium Inhibits Chromomethylase 3-Mediated Methylation of the Arabidopsis Nitrate Reductase Gene NIA2

    Get PDF
    Gene methylation is an important mechanism regulating gene expression and genome stability. Our previous work showed that methylation of the nitrate reductase (NR) gene NIA2 was dependent on chromomethylase 3 (CMT3). Here, we show that CMT3-mediated NIA2 methylation is regulated by ammonium in Arabidopsis thaliana. CHG sequences (where H can be A, T, or C) were methylated in NIA2 but not in NIA1, and ammonium [(NH4)2SO4] treatment completely blocked CHG methylation in NIA2. By contrast, ammonium had no effect on CMT3 methylation, indicating that ammonium negatively regulates CMT3-mediated NIA2 methylation without affecting CMT3 methylation. Ammonium upregulated NIA2 mRNA expression, which was consistent with the repression of NIA2 methylation by ammonium. Ammonium treatment also reduced the overall genome methylation level of wild-type Arabidopsis. Moreover, CMT3 bound to specific promoter and intragenic regions of NIA2. These combined results indicate that ammonium inhibits CMT3-mediated methylation of NIA2 and that of other target genes, and CMT3 selectively binds to target DNA sequences for methylation

    Genetic and Molecular Characterization of a New EMS-Induced Mutant without the Third Glucose Moiety at the C-3 Sugar Chain of Saponin in Glycine max (L.) Merr.

    Get PDF
    Saponin, a secondary metabolite, is produced by various plant species, including soybean (Glycine max (L.) Merr.). Soybeans synthesize triterpenoid saponins, which are classified by their aglycone structure and sugar chain composition. Here, we characterized an ethyl methanesulfonate-induced mutant, PE1539, without saponin and with a glucose moiety at the third position of the C-3 sugar chain. The saponin phenotype of PE1539 is described by the accumulation of Ab-gamma g saponin and deficiency of Ab-alpha g saponin and DDMP-alpha g saponin, similar to a previously reported sg-3 mutant in soybean. Genetic analysis showed that the saponin phenotype of PE1539 is controlled by a recessive mutation. We mapped the gene responsible for the phenotype of PE1539 and the mapped region included Sg-3 (Glyma.10G104700). Further analysis of Sg-3 in PE1539 using DNA sequencing revealed a single-nucleotide substitution in the exon (G804A), resulting in a premature stop codon; thus, PE1539 produced a PSPG box-truncated protein. Saponin phenotype analysis of the F-2 population-from a cross between wild-type Uram and PE1539-showed that the phenotype of saponin was cosegregated with the genotype of Sg 3. Quantitative real-time PCR showed reduced expression of Sg-3 in PE1539 cells. Together, our data indicate that the saponin phenotype of PE1539 results from a mutation in Sg-3

    Anti-atherosclerotic vaccination against Porphyromonas gingivalis as a potential comparator of statin in mice

    Get PDF
    Background Porphyromonas gingivalis (Pg) is an oral anaerobe which damages teeth and periodontal tissues. Its body infection is known to cause chronic inflammation, thereby inducing an early stage of atherosclerosis through humoral immune actions. Hence, vaccination by immunizing the proteins of P. gingivalis (Pg) post sonication with heating may prevent atherosclerosis. This study aimed to compare the effect of its vaccination with statin, which effectively prevents atherosclerosis by lowering lipids. Methods The vaccine was produced by sonicating P. gingivalis through heating, and a total of 32 male APOE-/-mice (8-week old) were subjected Western diet for 8 weeks, in order to induce atherosclerosis in a physiological manner. Then, the mice were grouped to undergo four treatment conditions (i.e., no treatment, pitavastatin, vaccine, or pitavastatin with vaccine). Vaccination was conducted through nasal immunization and confirmed by a Pg-specific humoral immune reaction. Then, half of the mice in each group were orally injected with P. gingivalis for the next 5 weeks while the other half remained uninfected, generating a total of eight groups (n = 4/group). The mice were sacrificed at 3 weeks after the last injection. After harvesting the aorta, Oil Red O staining of en face was conducted with imaging and image analysis, and plaque formation was quantitatively determined. Results Compared to no treatment, the vaccination through nasal immunization significantly reduced the atherosclerotic plaque sizes in APOE -/- mice under Western diet to the comparable level of statin group. When both vaccine and statin were used, no clear synergistic effect was observed as opposed to expectation. Conclusions This study revealed that nasal immunization of heat shock P. gingivalis has a significant impact on the prevention of arteriosclerosis and acts as a potential comparator of statin

    Oldenlandia diffusa Promotes Antiproliferative and Apoptotic Effects in a Rat Hepatocellular Carcinoma with Liver Cirrhosis

    Get PDF
    Oldenlandia diffusa (OD) is commonly used with various diseases such as cancer, arthritis, and autoimmune disease. Liver cirrhosis is a predominant risk factor for hepatocellular carcinoma (HCC). Here, we show that the therapeutic effect of OD, which was investigated both in vitro and chemically, induced HCC model. OD significantly enhanced apoptosis and antiproliferative activity and reduced migration ability of HCC cells. In vivo, OD was treated twice a day for 28 days after confirmed HCC model through 2-[(18)F]-fluoro-2-deoxy-D-glucose ((18)F-FDG) imaging. The survival in OD treated groups was shown to have a greater therapeutic effect than the control group. 28 days after OD treatment, OD treated groups resulted in a significant reduction in tumor number, size, (18)F-FDG uptake, and serum levels such as alanine transaminase, aspartate transaminase, and alkaline phosphate compared to the control group. Also, proliferated cells in tumor sites by OD were reduced compared to the control group. Furthermore, several rats in OD treated group survived over 60 days and liver morphology of these rats showed the difference between tumor mass and normal tissue. These results suggest that OD may have antiproliferative activity, inhibition of metastasis, and apoptotic effects in chemically induced HCC model and can have the potential use for clinical application as anticancer drug of the herbal extract

    A small molecule redistributes iron in ferroportin-deficient mice and patient-derived primary macrophages

    Get PDF
    Deficiencies of the transmembrane iron-transporting protein ferroportin (FPN1) cause the iron misdistribution that underlies ferroportin disease, anemia of inflammation, and several other human diseases and conditions. A small molecule natural product, hinokitiol, was recently shown to serve as a surrogate transmembrane iron transporter that can restore hemoglobinization in zebrafish deficient in other iron transporting proteins and can increase gut iron absorption in FPN1-deficient flatiron mice. However, whether hinokitiol can restore normal iron physiology in FPN1-deficient animals or primary cells from patients and the mechanisms underlying such targeted activities remain unknown. Here, we show that hinokitiol redistributes iron from the liver to red blood cells in flatiron mice, thereby increasing hemoglobin and hematocrit. Mechanistic studies confirm that hinokitiol functions as a surrogate transmembrane iron transporter to release iron trapped within liver macrophages, that hinokitiol-Fe complexes transfer iron to transferrin, and that the resulting transferrin-Fe complexes drive red blood cell maturation in a transferrin-receptor-dependent manner. We also show in FPN1-deficient primary macrophages derived from patients with ferroportin disease that hinokitiol moves labile iron from inside to outside cells and decreases intracellular ferritin levels. The mobilization of nonlabile iron is accompanied by reductions in intracellular ferritin, consistent with the activation of regulated ferritin proteolysis. These findings collectively provide foundational support for the translation of small molecule iron transporters into therapies for human diseases caused by iron misdistribution

    Gender Differences in Diagnostic Values of Visceral Fat Area and Waist Circumference for Predicting Metabolic Syndrome in Koreans

    Get PDF
    Abdominal fat accumulation is known to be strongly implicated in development of metabolic syndrome (MetS). We examined diagnostic values of obesity-related parameters in 95 men and 185 women, and we determined optimal cutoff values of visceral fat area (VFA) and waist circumference (WC) for predicting the presence of multiple non-adipose components of MetS. Receiver operating characteristic (ROC) curve analysis revealed that VFA was the best indicator of MetS. WC and VFA exhibited similar diagnostic values for men and postmenopausal women, whereas WC was inferior to VFA for premenopausal women (area under ROC curve of VFA and WC was 0.76 and 0.52, respectively; P < 0.001). Optimal cutoff points of VFA and WC for predicting MetS were 136 cm2 and 89 cm in men and 95 cm2 and 82 cm in women, respectively. Subjects with VFA and WC above these cutoff values exhibited increased insulin resistance and increased carotid intima-media thickness. In conclusion, WC has a diagnostic value similar to VFA for predicting MetS in men and postmenopausal women, but not in premenopausal women. Further studies are necessary to develop a simple clinical parameter that reflects visceral fat in premenopausal women

    Genetic Traceability of Black Pig Meats Using Microsatellite Markers

    Get PDF
    Pork from Jeju black pig (population J) and Berkshire (population B) has a unique market share in Korea because of their high meat quality. Due to the high demand of this pork, traceability of the pork to its origin is becoming an important part of the consumer demand. To examine the feasibility of such a system, we aim to provide basic genetic information of the two black pig populations and assess the possibility of genetically distinguishing between the two breeds. Muscle samples were collected from slaughter houses in Jeju Island and Namwon, Chonbuk province, Korea, for populations J and B, respectively. In total 800 Jeju black pigs and 351 Berkshires were genotyped at thirteen microsatellite (MS) markers. Analyses on the genetic diversity of the two populations were carried out in the programs MS toolkit and FSTAT. The population structure of the two breeds was determined by a Bayesian clustering method implemented in structure and by a phylogenetic analysis in Phylip. Population J exhibited higher mean number of alleles, expected heterozygosity and observed heterozygosity value, and polymorphism information content, compared to population B. The FIS values of population J and population B were 0.03 and −0.005, respectively, indicating that little or no inbreeding has occurred. In addition, genetic structure analysis revealed the possibility of gene flow from population B to population J. The expected probability of identify value of the 13 MS markers was 9.87×10−14 in population J, 3.17×10−9 in population B, and 1.03×10−12 in the two populations. The results of this study are useful in distinguishing between the two black pig breeds and can be used as a foundation for further development of DNA markers

    Functional recovery and neural differentiation after transplantation of allogenic adipose-derived stem cells in a canine model of acute spinal cord injury

    Get PDF
    In this study, we evaluated if the implantation of allogenic adipose-derived stem cells (ASCs) improved neurological function in a canine spinal cord injury model. Eleven adult dogs were assigned to three groups according to treatment after spinal cord injury by epidural balloon compression: C group (no ASCs treatment as control), V group (vehicle treatment with PBS), and ASC group (ASCs treatment). ASCs or vehicle were injected directly into the injured site 1 week after spinal cord injury. Pelvic limb function after transplantation was evaluated by Olby score. Magnetic resonance imaging, somatosensory evoked potential (SEP), histopathologic and immunohistichemical examinations were also performed. Olby scores in the ASC group increased from 2 weeks after transplantation and were significantly higher than C and V groups until 8 weeks (p < 0.05). However, there were no significant differences between the C and V groups. Nerve conduction velocity based on SEP was significantly improved in the ASC group compared to C and V groups (p < 0.05). Positive areas for Luxol fast blue staining were located at the injured site in the ASC group. Also, GFAP, Tuj-1 and NF160 were observed immunohistochemically in cells derived from implanted ASCs. These results suggested that improvement in neurological function by the transplantation of ASCs in dogs with spinal cord injury may be partially due to the neural differentiation of implanted stem cells
    corecore