14 research outputs found

    Insights into the copper HiPIMS discharge:deposition rate and ionised flux fraction

    Get PDF
    The influence of pulse length, working gas pressure, and peak discharge current density on the deposition rate and ionised flux fraction in high power impulse magnetron sputtering discharges of copper is investigated experimentally using a charge-selective (electrically biasable) magnetically shielded quartz crystal microbalance (or ionmeter). The large explored parameter space covers both common process conditions and extreme cases. The measured ionised flux fraction for copper is found to be in the range from ≈10% to 80%, and to increase with increasing peak discharge current density up to a maximum at ≈ 1.25 A cm − 2 , before abruptly falling off at even higher current density values. Low working gas pressure is shown to be beneficial in terms of both ionised flux fraction and deposition rate fraction. For example, decreasing the working gas pressure from 1.0 Pa to 0.5 Pa leads on average to an increase of the ionised flux fraction by ≈ 14 percentage points (pp) and of the deposition rate fraction by ≈ 4 pp taking into account all the investigated pulse lengths.</p

    On the electron energy distribution function in the high power impulse magnetron sputtering discharge

    Get PDF
    We apply the Ionization Region Model (IRM) and the Orsay Boltzmann equation for ELectrons coupled with Ionization and eXcited states kinetics (OBELIX) model to study the electron kinetics of a high power impulse magnetron sputtering (HiPIMS) discharge. In the IRM the bulk (cold) electrons are assumed to exhibit a Maxwellian energy distribution and the secondary (hot) electrons, emitted from the target surface upon ion bombardment, are treated as a high energy tail, while in the OBELIX the electron energy distribution is calculated self-consistently using an isotropic Boltzmann equation. The two models are merged in the sense that the output from the IRM is used as an input for OBELIX. The temporal evolutions of the particle densities are found to agree very well between the two models. Furthermore, a very good agreement is demonstrated between the bi-Maxwellian electron energy distribution assumed by the IRM and the electron energy distribution calculated by the OBELIX model. It can therefore be concluded that assuming a bi-Maxwellian electron energy distribution, constituting a cold bulk electron group and a hot secondary electron group, is a good approximation for modeling the HiPIMS discharge

    Angular distribution of titanium ions and neutrals in high-power impulse magnetron sputtering discharges

    Get PDF
    The angular dependence of the deposition rates due to ions and neutrals in high-power impulse magnetron sputtering (HiPIMS) discharges with a titanium target were determined experimentally using a magnetically shielded and charge-selective quartz crystal microbalance (or ionmeter). These rates have been established as a function of the argon working gas pressure, the peak discharge current density, and the pulse length. For all explored cases, the total deposition rate exhibits a heart-shaped profile and the ionized flux fraction peaks on the discharge axis normal to the cathode target surface. This heart-shaped pattern is found to be amplified at increasing current densities and reduced at increased working gas pressures. Furthermore, it is confirmed that a low working gas pressure is beneficial for achieving high deposition rates and high ionized flux fractions in HiPIMS operation.Funding Agencies|Swedish Research Council [VR 2018-04139]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoeping University (Faculty Grant SFO-Mat-LiU ) [2009-00971]; Icelandic Research Fund [196141]; Evatec AG</p

    Operating modes and target erosion in high power impulse magnetron sputtering

    No full text
    Magnetron sputtering combines a glow discharge with sputtering from a target that simultaneously serves as a cathode for the discharge. The electrons of the discharge are confined between overarching magnetic field lines and the negatively biased cathode. As the target erodes during the sputter process, the magnetic field strengthens in the cathode vicinity, which can influence discharge parameters with the risk of impairing reproducibility of the deposition process over time. This is of particular concern for high-power impulse magnetron sputtering (HiPIMS) as the discharge current and voltage waveforms vary strongly with the magnetic field strength. We here discuss ways to limit the detrimental effect of target erosion on the film deposition process by choosing an appropriate mode of operation for the discharge. The goal is to limit variations of two principal flux parameters, the deposition rate and the ionized flux fraction. As an outcome of the discussion, we recommend operating HiPIMS discharges by maintaining the peak discharge current constant

    Operating modes and target erosion in high power impulse magnetron sputtering

    Get PDF
    Magnetron sputtering combines a glow discharge with sputtering from a target that simultaneously serves as a cathode for the discharge. The electrons of the discharge are confined between overarching magnetic field lines and the negatively biased cathode. As the target erodes during the sputter process, the magnetic field strengthens in the cathode vicinity, which can influence discharge parameters with the risk of impairing reproducibility of the deposition process over time. This is of particular concern for high-power impulse magnetron sputtering (HiPIMS) as the discharge current and voltage waveforms vary strongly with the magnetic field strength. We here discuss ways to limit the detrimental effect of target erosion on the film deposition process by choosing an appropriate mode of operation for the discharge. The goal is to limit variations of two principal flux parameters, the deposition rate and the ionized flux fraction. As an outcome of the discussion, we recommend operating HiPIMS discharges by maintaining the peak discharge current constant.Funding Agencies|Free State of Saxony; European Regional Development Fund [100336119]; Icelandic Research Fund [196141]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009-00971]</p

    Target ion and neutral spread in high power impulse magnetron sputtering

    Get PDF
    In magnetron sputtering, only a fraction of the sputtered target material leaving the ionization region is directed toward the substrate. This fraction may be different for ions and neutrals of the target material as the neutrals and ions can exhibit a different spread as they travel from the target surface toward the substrate. This difference can be significant in high power impulse magnetron sputtering (HiPIMS) where a substantial fraction of the sputtered material is known to be ionized. Geometrical factors or transport parameters that account for the loss of produced film-forming species to the chamber walls are needed for experimental characterization and modeling of the magnetron sputtering discharge. Here, we experimentally determine transport parameters for ions and neutral atoms in a HiPIMS discharge with a titanium target for various magnet configurations. Transport parameters are determined to a typical substrate, with the same diameter (100 mm) as the cathode target, and located at a distance 70 mm from the target surface. As the magnet configuration and/or the discharge current are changed, the transport parameter for neutral atoms xi(tn) remains roughly the same, while transport parameters for ions xi(ti) vary greatly. Furthermore, the relative ion-to-neutral transport factors, xi(ti)/xi(tn), that describe the relative deposited fractions of target material ions and neutrals onto the substrate, are determined to be in the range from 0.4 to 1.1.Funding Agencies|Icelandic Research Fund [196141]; Free State of Saxony; European Regional Development Fund [100336119]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009-00971]</p

    Influence of the magnetic field on the extension of the ionization region in high power impulse magnetron sputtering discharges

    Get PDF
    Abstract The high power impulse magnetron sputtering (HiPIMS) discharge brings about increased ionization of the sputtered atoms due to an increased electron density and efficient electron energization during the active period of the pulse. The ionization is effective mainly within the electron trapping zone, an ionization region (IR), defined by the magnet configuration. Here, the average extension and the volume of the IR are determined based on measuring the optical emission from an excited level of the argon working gas atoms. For particular HiPIMS conditions, argon species ionization and excitation processes are assumed to be proportional. Hence, the light emission from certain excited atoms is assumed to reflect the IR extension. The light emission was recorded above a 100 mm diameter titanium target through a 763 nm bandpass filter using a gated camera. The recorded images directly indicate the effect of the magnet configuration on the average IR size. It is observed that the shape of the IR matches the shape of the magnetic field lines rather well. The IR is found to expand from 10 and 17 mm from the target surface when the parallel magnetic field strength 11 mm above the racetrack is lowered from 24 to 12 mT at a constant peak discharge current

    Modeling of high power impulse magnetron sputtering discharges with graphite target

    Get PDF
    The ionization region model (IRM) is applied to model a high power impulse magnetron sputtering discharge in argon with a graphite target. Using the IRM, the temporal variation of the various species and the average electron energy, as well as internal parameters such as the ionization probability, back-attraction probability, and the ionized flux fraction of the sputtered species, is determined. It is found that thedischarge develops into working gas recycling and most of the discharge current at the cathode target surface is composed of Ar+ ions, which constitute over 90% of the discharge current, while the contribution of the C+ ions is always small (&amp;lt;5%), even for peak current densities close to 3 A cm(-2). For the target species, the time-averaged ionization probability &amp;lt;alpha(t,pulse)&amp;gt; is low, or 13-27%, the ion back-attraction probability during the pulse &amp;lt;beta(t,pulse)&amp;gt; is high (&amp;gt;92%), and the ionized flux fraction is about 2%. It is concluded that in the operation range studied here it is a challenge to ionize carbon atoms, that are sputtered off of a graphite target in a magnetron sputtering discharge, when depositing amorphous carbon films.Funding Agencies|Free State of Saxony; European Regional Development FundEuropean Commission [100336119]; Icelandic Research Fund [196141]; Swedish Research CouncilSwedish Research CouncilEuropean Commission [VR 201804139]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009-00971]</p
    corecore