15 research outputs found
Radiation Test Results for a MEMS Microshutter Operating at 60 K
The James Webb Space Telescope (JWST), the successor to the Hubble Space Telescope, is due to be launched in 2013 with the goal of searching the very distant Universe for stars that formed shortly after the Big Bang. Because this occurred so far back in time, the available light is strongly red-shifted, requiring the use of detectors sensitive to the infrared portion of the electromagnetic spectrum. HgCdTe infrared focal plane arrays, cooled to below 30 K to minimize noise, will be used to detect the faint signals. One of the instruments on JWST is the Near Infrared Spectrometer (NIRSPEC) designed to measure the infrared spectra of up to 100 separate galaxies simultaneously. A key component in NIRSPEC is a Micro-Electromechanical System (MEMS), a two-dimensional micro-shutter array (MSA) developed by NASA/GSFC. The MSA is inserted in front of the detector to allow only the light from the galaxies of interest to reach the detector and to block the light from all other sources. The MSA will have to operate at 30 K to minimize the amount of thermal radiation emitted by the optical components from reaching the detector array. It will also have to operate in the space radiation environment that is dominated by the MSA will be exposed to a large total ionizing dose of approximately 200 krad(Si). Following exposure to ionizing radiation, a variety of MEMS have exhibited performance degradation. MEMS contain moving parts that are either controlled or sensed by changes in electric fields. Radiation degradation can be expected for those devices where there is an electric field applied across an insulating layer that is part of the sensing or controlling structure. Ionizing radiation will liberate charge (electrons and holes) in the insulating layers, some of which may be trapped within the insulating layer. Trapped charge will partially cancel the externally applied electric field and lead to changes in the operation of the MEMS. This appears to be a general principle for MEMS. Knowledge of the above principle has raised the concern at NASA that the MSA might also exhibit degraded performance because, i) each shutter flap is a multilayer structure consisting of metallic and insulating layers and ii) the movement of the shutter flaps is partially controlled by the application of an electric field between the shutter flap and the substrate (vertical support grid). The whole mission would be compromised if radiation exposure were to prevent the shutters from opening and closing properly. energetic ionizing particles. Because it is located A unique feature of the MSA is that, as outside the spacecraft and has very little shielding, previously mentioned, it will have to operate at temperatures near 30 K. To date, there are no published reports on how very low temperatures (- 30K) affect the response of MEMS devices to total ionizing dose. Experiments on SiO2 structures at low temperatures (80 K) indicate that the electrons generated by the ionizing radiation are mobile and will move rapidly under the application of an external electric field. Holes, on the other hand, that would normally move in the opposite direction through the SiO2 via a "thermal hopping" process, are effectively immobile at low electric fields as they are trapped close to their generation sites. However, for sufficiently large electric fields (greater than 3 MV/cm) holes are able to move through the SiO2. The larger the field, the more rapidly the holes move. The separation of the electrons and holes leads to a reduced electric field within the insulating layer. To overcome this reduction in electric field, a greater external voltage will have to be applied that alters the normal operation of the device. This report presents the results of radiation testing of the MSA at 60 K. The temperature was higher than the targeted temperature because of a faulty electrical interconnect on the test board. Specifically, our goal was to determine whether the MSA would function propey after a TID of 200 krad(Si)
Elucidation of the mechanisms of action of Bacteriophage K/nano-emulsion formulations against S. aureus via measurement of particle size and zeta potential
In earlier work we have demonstrated the effect that nano-emulsions have on bacterial growth, and most importantly the enhanced bacteriophage infectivity against Staphylococcus aureus in planktonic culture when phage are carried in nano-emulsions. However, the mechanisms of enhancement of the bacteriophage killing effect are not specifically understood. This work focuses on the investigation of the possible interactions between emulsion droplets and bacterial cells, between emulsion droplets and bacteriophages, and finally interactions between all three components: nano-emulsion droplets, bacteria, and bacteriophages. The first approach consists of simple calculations to determine the spatial distribution of the components, based on measurements of particle size. It was found that nano-emulsion droplets are much more numerous than bacteria or bacteriophage, and due to their size and surface area they must be covering the surface of both cells and bacteriophage particles. Stabilisation of bacteriophages due to electrostatic forces and interaction with nano-emulsion droplets is suspected, since bacteriophages may be protected against inactivation due to 'charge shielding'. Zeta potential was measured for the individual components in the system, and for all of them combined. It was concluded that the presence of nano-emulsions could be reducing electrostatic repulsion between bacterial cells and bacteriophage, both of which are very negatively 'charged'. Moreover, nano-emulsions lead to more favourable interaction between bacteriophages and bacteria, enhancing the anti-microbial or killing effect. These findings are relevant since the physicochemical properties of nano-emulsions (i.e. particle size distribution and zeta potential) are key in determining the efficacy of the formulation against infection in the context of responsive burn wound dressings-which is the main target for this work
Low Temperature (30 K) TID Test Results of a Radiation Hardened 128 Channel Serial-to-Parallel Converter
This viewgraph presentation reviews the low temperature, Total Ionizing Dose (TID) tests of radiation hardened serial to parallel converter to be used on the James Webb Space Telescope. The test results show that the original HV583 level shifter - a COTS part -was not suitable for JWST because the supply currents exceeded specs after 20 krad( Si) .The HV584 - functionally similar to the HV583 -was designed using RHBD approach that reduced the leakage currents to within acceptable levels and had only a small effect on the level-shifted output voltage
FOCS: a novel method for analyzing enhancer and gene activity patterns infers an extensive enhancer–promoter map
Abstract Recent sequencing technologies enable joint quantification of promoters and their enhancer regions, allowing inference of enhancer–promoter links. We show that current enhancer–promoter inference methods produce a high rate of false positive links. We introduce FOCS, a new inference method, and by benchmarking against ChIA-PET, HiChIP, and eQTL data show that it results in lower false discovery rates and at the same time higher inference power. By applying FOCS to 2630 samples taken from ENCODE, Roadmap Epigenomics, FANTOM5, and a new compendium of GRO-seq samples, we provide extensive enhancer–promotor maps (http://acgt.cs.tau.ac.il/focs). We illustrate the usability of our maps for deriving biological hypotheses
Additional file 3: of FOCS: a novel method for analyzing enhancer and gene activity patterns infers an extensive enhancer–promoter map
Tables S5–S6 GRO-seq and ChIA-PET samples. (XLSX 25 kb
Additional file 2: of FOCS: a novel method for analyzing enhancer and gene activity patterns infers an extensive enhancer–promoter map
Table S4 GO enrichment analyses. (XLSX 29 kb
Additional file 4: of FOCS: a novel method for analyzing enhancer and gene activity patterns infers an extensive enhancer–promoter map
Review history. (DOCX 473 kb
Additional file 1: of FOCS: a novel method for analyzing enhancer and gene activity patterns infers an extensive enhancer–promoter map
Figures S1–S14, Tables S1–S3, and Supplemental Methods. (PDF 3127 kb
A Miniature Palladium-Iron Thermometer for Temperatures Down to 0.05 K
Magnetic thermometers are appealing at temperatures below about 0.1 Kelvin, because the avoid the noise self-heating problems associated with resistive thermometers. In practical, metallic dilute electronic thermometers add the advantages of chemical stability, high thermal conductivity, and easy in heat sinking work we describe a palladium-iron thermometer which was designed to be small and conveniently packaged and optimized for use at temperatures down to 0.05 Kelvin. The device showed Curie-Weiss behavior above about 0.06 Kelvin, and we achieve 41 nK/ square root of z temperature resolution at a temperature of 49 mK. We describe the design and operation of this thermometers and present the test results
The HAWC and SAFIRE Adiabatic Demagnetization Refrigerators
The High-Resolution Airborne Wide-band Camera (HAWC) and Submillimeter and Far Infrared Experiment (SAFIRE) are far-infrared experiments which will fly on the Stratospheric Observatory for Infrared Astronomy (SOFIA) aircraft. HAWC's detectors will operate at 0.2 Kelvin, while those of SAFIRE will be at 0.1 Kelvin. Each instrument will include an adiabatic demagnetization refrigerator (ADR) to cool its detector stage from the liquid helium bath temperature (HAWC's at 4.2 Kelvin and SAFIRE's pumped to about 1.3 Kelvin) to its operating temperature. Except for the magnets used to achieve the cooling and a slight difference in the heat switch design, the two ADRs are nearly identical. We describe the ADR design and present the results of performance testing