767 research outputs found

    Ultraviolet spectrometer and polarimeter (UVSP) software development and hardware tests for the solar maximum mission

    Get PDF
    The Ultraviolet Spectrometer/Polarimeter Instrument (UVSP) for the Solar Maximum Mission (SMM) was based on the re-use of the engineering model of the high resolution ultraviolet spectrometer developed for the OSO-8 mission. Lockheed assumed four distinct responsibilities in the UVSP program: technical evaluation of the OSO-8 engineering model; technical consulting on the electronic, optical, and mechanical modifications to the OSO-8 engineering model hardware; design and development of the UVSP software system; and scientific participation in the operations and analysis phase of the mission. Lockheed also provided technical consulting and assistance with instrument hardware performance anomalies encountered during the post launch operation of the SMM observatory. An index to the quarterly reports delivered under the contract are contained, and serves as a useful capsule history of the program activity

    Four-Loop Anomalous Dimensions for Radiative Flavour-Changing Decays

    Get PDF
    We evaluate the complete four-loop anomalous dimension matrix that is necessary for determining the effective flavour-changing neutral current couplings qbar-q'-gamma and qbar-q'-g at the next-to-next-to-leading order in QCD. The resulting O(alpha_s^2(mu_b)) correction to the B -> X_s gamma branching ratio amounts to around -2.9% for mu_b = 5 GeV, and -4.4% for mu_b = 2.5 GeVComment: 19 page

    Very high resolution UV and X-ray spectroscopy and imagery of solar active regions

    Get PDF
    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique

    Flavor Physics in the Randall-Sundrum Model: I. Theoretical Setup and Electroweak Precision Tests

    Full text link
    A complete discussion of tree-level flavor-changing effects in the Randall-Sundrum (RS) model with brane-localized Higgs sector and bulk gauge and matter fields is presented. The bulk equations of motion for the gauge and fermion fields, supplemented by boundary conditions taking into account the couplings to the Higgs sector, are solved exactly. For gauge fields the Kaluza-Klein (KK) decomposition is performed in a covariant R_xi gauge. For fermions the mixing between different generations is included in a completely general way. The hierarchies observed in the fermion spectrum and the quark mixing matrix are explained naturally in terms of anarchic five-dimensional Yukawa matrices and wave-function overlap integrals. Detailed studies of the flavor-changing couplings of the Higgs boson and of gauge bosons and their KK excitations are performed, including in particular the couplings of the standard W and Z bosons. A careful analysis of electroweak precision observables including the S and T parameters and the Zbb couplings shows that the simplest RS model containing only Standard Model particles and their KK excitations is consistent with all experimental bounds for a KK scale as low as a few TeV, if one allows for a heavy Higgs boson and/or for an ultra-violet cutoff below the Planck scale. The study of flavor-changing effects includes analyses of the non-unitarity of the quark mixing matrix, anomalous right-handed couplings of the W bosons, tree-level flavor-changing neutral current couplings of the Z and Higgs bosons, the rare decays t-->c(u)+Z and t-->c(u)+h, and the flavor mixing among KK fermions. The results obtained in this work form the basis for general calculations of flavor-changing processes in the RS model and its extensions.Comment: 70 pages, 12 figures. v2: Incorrect treatment of phases in zero-mode approximation corrected, and discussion of electroweak precision tests modified. v3: Additional minor modifications and typos corrected; version published in JHE

    Lyman alpha initiated winds in late-type stars

    Get PDF
    The IUE survey of late-type stars revealed a sharp division in the HR diagram between stars with solar type spectra (chromosphere and transition region lines) and those with non-solar type spectra (only chromosphere lines). Models of both hot coronae and cool wind flows were calculated using stellar model chromospheres as starting points for stellar wind calculations in order to investigate the possibility of having a supersonic transition locus in the HR diagram dividing hot coronae from cool winds. From these models, it is concluded that the Lyman alpha flux may play an important role in determining the location of a stellar wind critical point. The interaction of Lyman alpha radiation pressure with Alfven waves in producing strong, low temperature stellar winds in the star Arcturus is examined

    Multi-wavelength observations of Proxima Centauri

    Full text link
    We report simultaneous observations of the nearby flare star Proxima Centauri with VLT/UVES and XMM-Newton over three nights in March 2009. Our optical and X-ray observations cover the star's quiescent state, as well as its flaring activity and allow us to probe the stellar atmospheric conditions from the photosphere into the chromosphere, and then the corona during its different activity stages. Using the X-ray data, we investigate variations in coronal densities and abundances and infer loop properties for an intermediate-sized flare. The optical data are used to investigate the magnetic field and its possible variability, to construct an emission line list for the chromosphere, and use certain emission lines to construct physical models of Proxima Centauri's chromosphere. We report the discovery of a weak optical forbidden Fe xiii line at 3388 AA during the more active states of Proxima Centauri. For the intermediate flare, we find two secondary flare events that may originate in neighbouring loops, and discuss the line asymmetries observed during this flare in H i, He i, and Ca ii lines. The high time-resolution in the H alpha line highlights strong temporal variations in the observed line asymmetries, which re-appear during a secondary flare event. We also present theoretical modelling with the stellar atmosphere code PHOENIX to construct flaring chromospheric models.Comment: 19 pages, 22 figures, accepted by A&

    L-band (3.5 micron) IR-excess in massive star formation, II. RCW 57/NGC 3576

    Full text link
    We present a JHKL survey of the massive star forming region RCW 57 (NGC 3576) based on L-band data at 3.5 micron taken with SPIREX (South Pole Infrared Explorer), and 2MASS JHK data at 1.25-2.2 micron. This is the second of two papers, the first one concerning a similar JHKL survey of 30 Doradus. Colour-colour and colour-magnitude diagrams are used to detect sources with infrared excess. This excess emission is interpreted as coming from circumstellar disks, and hence gives the cluster disk fraction (CDF). Based on the CDF and the age of RCW 57, it is possible to draw conclusions on the formation and early evolution of massive stars. The infrared excess is detected by comparing the locations of sources in JHKL colour-colour and L vs. (K-L) colour-magnitude diagrams to the reddening band due to interstellar extinction. A total of 251 sources were detected. More than 50% of the 209 sources included in the diagrams have an infrared excess. Comparison with other JHKL surveys, including the results on 30 Doradus from the first paper, support a very high initial disk fraction (>80%) even for massive stars, although there is an indication of a possible faster evolution of circumstellar disks around high mass stars. 33 sources only found in the L-band indicate the presence of heavily embedded, massive Class I protostars. We also report the detection of diffuse PAHs emission throughout the RCW 57 region.Comment: 15 pages, 13 figure

    X-Ray Evidence for Flare Density Variations and Continual Chromospheric Evaporation in Proxima Centauri

    Get PDF
    Using the XMM-Newton X-ray observatory to monitor the nearest star to the Sun, Proxima Centauri, we recorded the weakest X-ray flares on a magnetically active star ever observed. Correlated X-ray and optical variability provide strong support for coronal energy and mass supply by a nearly continuous sequence of rapid explosive energy releases. Variable emission line fluxes were observed in the He-like triplets of OVII and NeIX during a giant flare. They give direct X-ray evidence for density variations, implying densities between 2x10^{10} - 4x10^{11} cm^{-3} and providing estimates of the mass and the volume of the line-emitting plasma. We discuss the data in the context of the chromospheric evaporation scenario.Comment: 10 pages, 2 figures, accepted by The Astrophysical Journal, Letters; improved calculations of radiative loss of cool plasma (toward end of paper

    A Near-Infrared L Band Survey of the Young Embedded Cluster NGC 2024

    Full text link
    We present the results of the first sensitive L band (3.4 micron) imaging study of the nearby young embedded cluster NGC 2024. Two separate surveys of the cluster were acquired in order to obtain a census of the circumstellar disk fraction in the cluster. From an analysis of the JHKL colors of all sources in our largest area, we find an infrared excess fraction of > 86%. The JHKL colors suggest that the infrared excesses arise in circumstellar disks, indicating that the majority of the sources which formed in the NGC 2024 cluster are currently surrounded by, and likely formed with circumstellar disks. The excess fractions remain very high, within the errors, even at the faintest L magnitudes from our deeper surveys suggesting that disks form around the majority of the stars in very young clusters such as NGC 2024 independent of mass. From comparison with published JHKL observations of Taurus, we find the K - L excess fraction in NGC 2024 to be consistent with a high initial incidence of circumstellar disks in both NGC 2024 and Taurus. Because NGC 2024 represents a region of much higher stellar density than Taurus, this suggests that disks may form around most of the YSOs in star forming regions independent of environment. We find a relatively constant JHKL excess fraction with increasing cluster radius, indicating that the disk fraction is independent of location in the cluster. In contrast, the JHK excess fraction increases rapidly toward the central region of the cluster, and is most likely due to contamination of the K band measurements by bright nebulosity in the central regions of the cluster. We identify 45 candidate protostellar sources in the central regions of the NGC 2024 cluster, and find a lower limit on the protostellar phase of early stellar evolution of 0.4 - 1.4 X 10^5 yr, similar to that in Taurus.Comment: 37 pages, 8 figures, 3 tables, To appear in the Astronomical Journa
    corecore