293 research outputs found

    The Journey to Expert: Teaching Expertise Acquisition of Ten Early Childhood Teachers in Shanghai

    Get PDF
    China’s principal concern for ensuring educational quality has generated an emphasis on teacher professional development efforts -- using the most effective ways to transform its teachers from novices to experts. Changes made in Shanghai, the pioneer and model of Chinese education reforms, have far-reaching effects throughout the entire country. Through naturalistic inquiry, this qualitative study explores the meaning of teaching expertise and the process by which ten early childhood teachers in Shanghai evolved from novices to experts. Guiding research questions were as follows: How do 10 early childhood teachers conceptualize expert teaching? How do they describe their process of transforming from a novice to an expert teacher? What are the personal and supportive resources that they attribute to their professional development from novice to expert teachers? Narrative analysis on data yielded six consistent and interrelated themes (recognizing self, conceptualizing expert teacher and teaching expertise, attributing professional growth, acquiring expertise, advising other teachers and additional influences from family and life events) with each evoking a central phenomenon: professional engagement. This multi-dimensional concept is critical to teachers’ growth as vigorous, dedicated and fulfilled experts. The 10 teachers, themselves identified as experts, submitted a description of excellent practitioners who love, understand and interact well with children; who have systematic and dynamic knowledge of distinct domains associated with various age-groups; and who are critical thinkers and diligent learners with a strong sense of ethics. Teacher expertise increases gradually with every step of their careers. This study found distinctive career trajectories for expert teachers--eight key steps with three role transitions and basic strategies. Novice teachers’ careers might start or suffer from low points, but, sustained by professional engagement, they can develop personal and supportive resources to advance further. Findings on how these Shanghai expert teachers developed and crafted their teaching skills have many implications for China’s teacher preparation programs at district, regional and national levels. Since China is a member of the global educational community, research findings also have potential for international relevance as well. Application beyond China must acknowledge the cultural and social context of these Shanghai teachers’ professional development to expert teachers

    Rigid-flexible coupling dynamics simulation of planetary gear transmission based on MFBD

    Get PDF
    This paper deals with the problem of getting dynamic characteristics in complex mechanical multi-body system. Based on the MFBD (Multi-Flexible-Body Dynamics) technology, the rigid-flexible coupling dynamic simulation method is proposed, and then the method is applied to the planetary gear transmission. The results show that the dynamic stress distribution of planetary gear can be obtained to determine the dangerous location, and the dynamic response characteristics are more obvious. Then the simulation model of planetary gear transmission with broken tooth is established, the fault feature extraction in time-frequency domain is carried out using the acceleration signal. In addition, industrial data is also used to validate the effectiveness of the proposed method

    Systems analysis of circadian time-dependent neuronal epidermal growth factor receptor signaling

    Get PDF
    BACKGROUND: Identifying the gene regulatory networks governing physiological signal integration remains an important challenge in circadian biology. Epidermal growth factor receptor (EGFR) has been implicated in circadian function and is expressed in the suprachiasmatic nuclei (SCN), the core circadian pacemaker. The transcription networks downstream of EGFR in the SCN are unknown but, by analogy to other SCN inputs, we expect the response to EGFR activation to depend on circadian timing. RESULTS: We have undertaken a systems-level analysis of EGFR circadian time-dependent signaling in the SCN. We collected gene-expression profiles to study how the SCN response to EGFR activation depends on circadian timing. Mixed-model analysis of variance (ANOVA) was employed to identify genes with circadian time-dependent EGFR regulation. The expression data were integrated with transcription-factor binding predictions through gene group enrichment analyses to generate robust hypotheses about transcription-factors responsible for the circadian phase-dependent EGFR responses. CONCLUSION: The analysis results suggest that the transcriptional response to EGFR signaling in the SCN may be partly mediated by established transcription-factors regulated via EGFR transription-factors (AP1, Ets1, C/EBP), transcription-factors involved in circadian clock entrainment (CREB), and by core clock transcription-factors (Rorα). Quantitative real-time PCR measurements of several transcription-factor expression levels support a model in which circadian time-dependent EGFR responses are partly achieved by circadian regulation of upstream signaling components. Our study suggests an important role for EGFR signaling in SCN function and provides an example for gaining physiological insights through systems-level analysis

    Mechanistic examination of causes for narrow distribution in an endangered shrub: a comparison of its responses to drought stress with a widespread congeneric species

    Get PDF
    Although deep rooting is usually considered a drought-tolerant trait, we found that Syringapinnatifolia, a deep rooting and hydrotropic shrub, has a limited distribution in arid areas. To elucidate the mechanisms for its narrow distribution, we conducted two experiments to examine the physiological and morphological responses to water availability and heterogeneity in S. pinnatifolia and a widespread congeneric species, S. oblata. We measured gas exchange, water use efficiency, and plasticity index in plants of these two species grown at different levels of soil water regimes and in containers with patched water distribution. Our results showed that high photosynthetic capacity in the narrowly distributed S. pinnatifolia was an important factor enabling its survival in the harsh sub-alpine environment. High photosynthetic capacity in S. pinnatifolia, however, was obtained at the expense of high transpiratory water loss, resulting in lower integrative water use efficiency. Biomass allocation to roots in S. pinnatifolia increased by 73 % when soil water increased from 75 to 95 % field capacity, suggesting that S. pinnatifolia could be less competitive for above-ground resources under favorable water regimes. The horizontal root hydrotropism and vertical root hydrotropism of S. pinnatifolia in soil with patched water patterns were likely related to compensation for leaf water loss at low soil water level, indicating a limited capacity for homeostasis within the plant for water conservation and lower level of inherent drought-tolerance. In summary, greater degree of morphological plasticity but lower degree of physiological adjustment may be the main causes for the hydrotropism and narrow distribution of S. pinnatifolia in the sub-alpine habitats

    Time series-based groundwater level forecasting using gated recurrent unit deep neural networks

    Get PDF
    In this research, the mean monthly groundwater level with a range of 3.78 m in Qoşaçay plain, Iran, is forecast. Regarding three different layers of gated recurrent unit (GRU) structures and a hybrid of variational mode decomposition with gated recurrent unit (VMD-GRU), deep learning-based neural network models are developed. As the base model for performance comparison, the general single-long short-term memory-layer network model is developed. In all models, the module of sequence-to-one is used because of the lack of meteorological variables recorded in the study area. For modeling, 216 monthly datasets of the mean monthly water table depth of 33 different monitoring piezometers in the period April 2002–March 2020 are utilized. To boost the performance of the models and reduce the overfitting problem, an algorithm tuning process using different types of hyperparameter accompanied by a trial-and-error procedure is applied. Based on performance evaluation metrics, the total learnable parameters value and especially the model grading process, the new double-GRU model coupled with multiplication layer (×) (GRU2× model) is chosen as the best model. Under the optimal hyperparameters, the GRU2× model results in an R 2 of 0.86, a root mean square error (RMSE) of 0.18 m, a corrected Akaike’s information criterion (AICc) of −280.75, a running time for model training of 87 s and a total grade (TG) of 6.21 in the validation stage; and the hybrid VMD-GRU model yields an RMSE of 0.16 m, an R 2 of 0.92, an AICc of −310.52, a running time of 185 s and a TG of 3.34. © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

    Peripheral anti-inflammatory effects explain the ginsenosides paradox between poor brain distribution and anti-depression efficacy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effectiveness of ginseng in preventing and treating various central nervous system (CNS) diseases has been widely confirmed. However, ginsenosides, the principal components of ginseng, are characterized by poor accessibility to the brain, and this pharmacokinetic-pharmacological paradox remains poorly explained. Anti-inflammatory approaches are becoming promising therapeutic strategies for depression and other CNS diseases; however, previous studies have focused largely on anti-inflammatory therapies directed at the central nervous system. It is thus of interest to determine whether ginsenosides, characterized by poor brain distribution, are also effective in treating lipopolysaccharide- (LPS) induced depression-like behavior and neuroinflammation.</p> <p>Methods</p> <p>In an LPS-induced depression-like behavior model, the antidepressant effects of ginseng total saponins (GTS) were assessed using a forced swimming test, a tail suspension test, and a sucrose preference test. The anti-inflammatory efficacies of GTS in brain, plasma, and LPS-challenged RAW264.7 cells were validated using ELISA and quantitative real-time PCR. Moreover, indoleamine 2,3-dioxygenase (IDO) activity in the periphery and brain were also determined by measuring levels of kynurenine/tryptophan.</p> <p>Results</p> <p>GTS significantly attenuated LPS-induced depression-like behavior. Moreover, LPS-induced increases in 5-HT and tryptophane turnover in the brain were significantly reduced by GTS. IDO activities in brain and periphery were also suppressed after pretreatment with GTS. Furthermore, GTS-associated recovery from LPS-induced depression-like behavior was paralleled with reduced mRNA levels for IL-1β, IL-6, TNF-α, and IDO in hippocampus. Poor brain distribution of ginsenosides was confirmed in LPS-challenged mice. GTS treatment significantly decreased production of various proinflammatory cytokines in both LPS-challenged mice and RAW264.7 cells.</p> <p>Conclusion</p> <p>This study suggests that the anti-depression efficacy of GTS may be largely attributable to its peripheral anti-inflammatory activity. Our study also strengthens an important notion that peripheral anti-inflammation strategies may be useful in the therapy of inflammation-related depression and possibly other CNS diseases.</p

    Wnt/β-catenin signaling in liver cancers

    Get PDF
    Liver cancer is among the leading global healthcare issues associated with high morbidity and mortality. Liver cancer consists of hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), hepatoblastoma (HB), and several other rare tumors. Progression has been witnessed in understanding the interactions between etiological as well as environmental factors and the host in the development of liver cancers. However, the pathogenesis remains poorly understood, hampering the design of rational strategies aiding in preventing liver cancers. Accumulating evidence demonstrates that aberrant activation of the Wnt/β-catenin signaling pathway plays an important role in the initiation and progression of HCC, CCA, and HB. Targeting Wnt/β-catenin signaling potentiates a novel avenue for liver cancer treatment, which may benefit from the development of numerous small-molecule inhibitors and biologic agents in this field. In this review, we discuss the interaction between various etiological factors and components of Wnt/β-catenin signaling early in the precancerous lesion and the acquired mechanisms to further enhance Wnt/β-catenin signaling to promote robust cancer formation at later stages. Additionally, we shed light on current relevant inhibitors tested in liver cancers and provide future perspectives for preclinical and clinical liver cancer studies

    A CRM1 Inhibitor Alleviates Cardiac Hypertrophy and Increases the Nuclear Distribution of NT-PGC-1α in NRVMs

    Get PDF
    Chromosomal maintenance 1 (CRM1) inhibitors display antihypertrophic effects and control protein trafficking between the nucleus and the cytoplasm. PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1alpha) is a type of transcriptional coactivator that predominantly resides in the nucleus and is downregulated during heart failure. NT-PGC-1α is an alternative splicing variant of PGC-1α that is primarily distributed in the cytoplasm. We hypothesized that the use of a CRM1 inhibitor could shuttle NT-PGC-1α into the nucleus and activate PGC-1α target genes to potentially improve cardiac function in a mouse model of myocardial infarction (MI). We showed that PGC-1α and NT-PGC-1α were decreased in MI-induced heart failure mice. Phenylephrine and angiotensin II were applied to induce hypertrophy in neonatal rat ventricular myocytes (NRVMs). The antihypertrophic effects of the CRM1-inhibitor Selinexor was verified through profiling the expression of β-MHC and through visualizing the cell cross-sectional area. NRVMs were transfected with adenovirus-NT-PGC-1α or adenovirus-NLS (nucleus localization sequence)-NT-PGC-1α and then exposed to Selinexor. Confocal microscopy was then used to observe the shuttling of NT-PGC-1α. After NT-PGC-1α was shuttled into the nucleus, there was increased expression of its related genes, including PPAR-α, Tfam, ERR-γ, CPT1b, PDK4, and Nrf2. The effects of Selinexor on post-MI C57BL/6j mice were determined by echocardiography and qPCR. We found that Selinexor showed antihypertrophic effects but did not influence the ejection fraction of MI-mice. Interestingly, the antihypertrophic effects of Selinexor might be independent of NT-PGC-1α transportation
    corecore