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Chromosomal maintenance 1 (CRM1) inhibitors display antihypertrophic effects and
control protein trafficking between the nucleus and the cytoplasm. PGC-1α (peroxisome
proliferator-activated receptor gamma coactivator-1alpha) is a type of transcriptional
coactivator that predominantly resides in the nucleus and is downregulated during
heart failure. NT-PGC-1α is an alternative splicing variant of PGC-1α that is primarily
distributed in the cytoplasm. We hypothesized that the use of a CRM1 inhibitor
could shuttle NT-PGC-1α into the nucleus and activate PGC-1α target genes to
potentially improve cardiac function in a mouse model of myocardial infarction (MI).
We showed that PGC-1α and NT-PGC-1α were decreased in MI-induced heart failure
mice. Phenylephrine and angiotensin II were applied to induce hypertrophy in neonatal
rat ventricular myocytes (NRVMs). The antihypertrophic effects of the CRM1-inhibitor
Selinexor was verified through profiling the expression of β-MHC and through visualizing
the cell cross-sectional area. NRVMs were transfected with adenovirus-NT-PGC-1α

or adenovirus-NLS (nucleus localization sequence)-NT-PGC-1α and then exposed to
Selinexor. Confocal microscopy was then used to observe the shuttling of NT-PGC-1α.
After NT-PGC-1α was shuttled into the nucleus, there was increased expression of its
related genes, including PPAR-α, Tfam, ERR-γ, CPT1b, PDK4, and Nrf2. The effects
of Selinexor on post-MI C57BL/6j mice were determined by echocardiography and
qPCR. We found that Selinexor showed antihypertrophic effects but did not influence
the ejection fraction of MI-mice. Interestingly, the antihypertrophic effects of Selinexor
might be independent of NT-PGC-1α transportation.
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INTRODUCTION

Rates of heart failure (HF) are rising at an alarming rate throughout the world (Martinez-
Gonzalez and Ruiz-Canela, 2015). HF is commonly accompanied by cardiac hypertrophy
(Warren et al., 2017). Previous studies suggest that chromosomal maintenance 1 (CRM1) (also
called exportin-1) inhibitors exhibit antihypertrophic effects by influencing β-MHC and HDACs
(Monovich et al., 2009; Chahine et al., 2015). Additional studies on NT-PGC-1α, which is an
alternative splicing variant of PGC-1α, have revealed that CRM1 inhibitors can lead to a relative
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increase in the nuclear distribution of NT-PGC-1α (Chang
et al., 2010). Thus, the regulation of NT-PGC-1α by CRM1
inhibitors might represent a novel mechanism of their anti-
cardiac-hypertrophy effect.

NT-PGC-1α is a powerful regulator of fatty acid oxidation
(FAO) in adipose tissue (Zhang et al., 2009; Jun et al., 2014;
Kim et al., 2016; Liu et al., 2018). In recent years, a large
amount of experimental evidence has demonstrated that HF is
associated with metabolic dysfunction, which is accompanied
by the down regulation of PGC-1α, a key factor in controlling
mitochondrial energy metabolism (Arany et al., 2006; Schilling
and Kelly, 2011; Arumugam et al., 2016). It is generally accepted
that the dysregulation of mitochondrial energy metabolism
aggravates HF (Chang et al., 2016; Parihar and Parihar, 2017).
Thus, NT-PGC-1α might be important in the progression and
pathogenesis of HF. NT-PGC-1α is predominantly distributed in
the cytoplasm, and the PGC1 families fulfill most of their function
through the coactivation of transcription factors in the nucleus
(Zhang et al., 2009).

Although the subcellular distributions of NT-PGC-1α and
PGC-1α are different, NT-PGC-1α is able to partially compensate
for the function of PGC-1α, and this capability seems to be even
more robust in FAO (Jun et al., 2014). Furthermore, cAMP (cyclic
adenosine monophosphate) analogs can trigger both the shuffling
of NT-PGC-1α into the nucleus and the activation of PGC-1α

(Zhang et al., 2009). Therefore, it is plausible that NT-PGC-1α

fulfills the role of PGC-1α by entering the nucleus when energy
demands are increased. Importantly, the target genes of the PGC1
families are not limited to genes involved in FAO but include
others, such as FOXO, ERRs, and NRFs, which are favorable in
cardiovascular diseases (Vega et al., 2000; Riehle and Abel, 2012;
Martin et al., 2014). Thus, we hypothesized that transporting NT-
PGC-1α into the nucleus would likely lead to the activation of
targets of PGC-1α, which might be beneficial to cardiac function.
As a result, CRM1 inhibitors might be promising candidates
for this strategy.

MATERIALS AND METHODS

Experimental Animals
The 8- to 10-week-old male C57BL/6J mice and neonatal
Sprague-Dawley rats that were used in this study were obtained
from the laboratory of animal center of Southern Medical
University. All mice were housed in cages and bred in a
temperature-controlled room that was maintained at 22–26◦C on
a 12 h light–dark cycle with standard feed and water. This study
was approved by the Southern Medical University Review Board
and the animals used in this study comply with the Guide for the
Care and Use of Laboratory Animals (NIH, 8th Edition, 2011).

Models of Myocardial Infarction
The mice used in this study were anesthetized with a mixture
of xylazine (5 mg/kg) and ketamine (100 mg/kg) delivered
by intraperitoneal injection. Once the mouse was anesthetized,
the trachea was intubated to provide mechanical ventilation
(inspiration/expiration ratio: 1:3, 120 strokes/min), the left thorax

of the mouse was opened, and a left coronary artery ligation
was performed to induce a myocardial infarction. Successful
ligation was confirmed by ST-segment elevation as measured by
an electrocardiogram. The sham-operated mice were subjected
to the same treatment without ligation. Three days after the
operation, Selinexor (10 mg/kg) or DMSO (20 µl) mixed with
0.2 ml distilled water were given by gavage to MI-mice every 3
days. After 30 postoperative days, the mice were sacrificed using
an overdose of anesthetic. Their hearts were extracted and soaked
in liquid nitrogen, then stored in an−80◦C freezer for future use
or extracted for HE and immunohistochemical staining.

Echocardiography
Echocardiography was performed on anesthetized (2%
isoflurane) mice using a VEVO2100 system (Visual Sonic,
North American), which has been previously described (Liu
et al., 2017). The LV end-diastolic diameter (LVEDD) and
LV end-systolic diameter (LVESD) were measured using
the M-mode.

Isolation and Culture of Neonatal Rat
Ventricular Cardiomyocytes (NRVMs)
One- to three-day-old Sprague-Dawley rats were sacrificed
via 2% isoflurane inhalation and cervical dislocation. The
hearts were then removed, dissected, and enzymatically
digested with 0.2% pancreatin overnight. The cells were then
isolated by magnetic stirring with collagenase II (1 mg/mL)
in a sterile glass vial. After 90 min of differential adhesion,
the isolated cells were plated in a culture dish containing
0.1 mM 5-bromo-2′-deoxyuridine (BrdU, Sigma) and
10% fetal bovine serum (FBS, Gibco) to inhibit fibroblast
proliferation. After 48 h, spontaneously contracting neonatal
rat ventricular myocytes (NRVMs) were treated with
either 10 µM phenylephrine (PE, Selleck) for 72 h, 1 µM
angiotensin II (AngII, Abcam) for 24 h or 50 nM Selinexor
(Selleck) for 4 h in Dulbecco’s Modified Eagle’s Medium
(DMEM) (Gibco; Thermo Fisher) containing penicillin and
streptomycin (100:1) (Gibco; Thermo Fisher). Phalloidin
staining was performed by first fixing the cells with 4%
paraformaldehyde for 10 min, then washing with phosphate
buffered saline containing 0.1% Triton X-100, and finally
staining with FITC-phalloidin (Actin-tracker green) (Beyotime,
China) for 60 min and Hoechst 33258 (Thermo Fisher)
for 15 min. Adenovirus-infected cells were stained Hoechst
33258 (Thermo Fisher) for 15 min after being treated
with 50 nM Selinexor (Selleck) for 4 h. The results were
visualized by confocal microscopy. Cell viability was assessed
using the Cell Counting Kit-8 (CCK8) according to the
manufacturer’s guidelines and previous reports (Lin et al.,
2016). The CCK8 assay was also used to test the toxicity of
Selinexor on the NRVMs.

Infection of Adenovirus in NRVMs
The adenoviruses, including mCherry-NT-PGC-1α and
mCherry-NLS-NT-PGC-1α, were purchased from the
OBiO Technology Corp. Ltd., China. Nuclear localization
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sequence (NLS) is an amino acid sequence that controls
protein import into the cell nucleus. A multiplicity of
infection (MOI) of 100 was used for the adenovirus to
induce the overexpression of NT-PGC-1α in the NRVMs.
Four hours after the initial infection, an equal volume of
fresh growth medium was added to the culture. The cells
were then incubated for 24 h to allow the virus to achieve
its maximum effect.

Real-Time PCR Assays
Total RNA was extracted by RNAiso Plus (Takara). We
used 1 µg of total RNA per reaction for the first-strand
cDNA synthesis using RT primers (Takara). Quantitative
real-time PCR assays were performed using cDNA in a
10 µL reaction volume (SYBR Green PCR kit; Takara)
on an Applied LightCycler 480 system (Roche). Gene
expression levels were measured using the 11Ct method
with normalization to β-actin. The primers used in this study
were obtained from Sangon (primer sequences were listed
in Tables 1, 2).

TABLE 1 | Primer sequences.

Target genes Forward primer Reverse primer

β-Actin (Rat) TGGACAGTGAGGCAAGGATAG TACTGCCCTGGCTCCTAGCA

TFAM(Rat) GCTGATGGGCTTAGAGAAGG CCGAGGTCTTTTTGGTTTTC

Acadm(Rat) GTCGCCCCAGACTACGATAA GCCAAGACCACCACAACTCT

Acadvl(Rat) TGGACAAAGGAAAGGAACTCA ACTCAGACCACTGCCAATCC

PDK4(Rat) ACCGTCGTCTTGGGAAAAG CGTTGGAGCAGTGGAGTATG

Glut4(Rat) AGGCACCCTCACTACCCTTT AGCATAGCCCTTTTCCTTCC

ERRγ(Rat) ATCCCCAGACCAAGTGTGAA TGAGGCAACCCCATAGTGA

PPARγ(Rat) CGTCCCCGCCTTATTATTCT CCTGATGCTTTATCCCCACA

NRF2(Rat) CAAATCCCACCTTGAACACA TGACTAATGGCAGCAGAGGA

Cpt2(Rat) CTGTCCACCAGCACTCTGAA GCAGCCTATCCAGTCATCGT

Cpt1b(Rat) AAGAACACGAGCCAACAAGC TACCATACCCAGTGCCATCA

PPAR-α(Rat) GACAAGGCCTCAGGATACCA TCTTGCAGCTTCGATCACAC

TABLE 2 | Primer sequences.

Target genes Forward primer Reverse primer

Nrf-1(mouse) GCCAATGTCCGCAGTGAT ACGGTCTGTGATGGTACGAG

Nrf-2(mouse) GGCCACTTAAAAGACGAGA GACTTCAAGATACAAGGTGCT

ERR-
α(mouse)

CGGTGTGGCATCCTGTGA GCGTCTCCGCTTGGTGAT

ERR-
γ(mouse)

TCTTGACAGAGTGCGTGGAG CACCAACAAATGCGAGACAA

TFAM(mouse) GCTGATGGGTATGGAGAAGG GCTGAACGAGGTCTTTTTGG

PGC-
1α(mouse)

ACGCAGCCCTATTCATTGTT TCCTTTGGGGTCTTTGAGAA

CPT1b(mouse) GCACACCAGGCAGTAGCTTT CAGGAGTTGATTCCAGACAG
GTA

CPT2(mouse) CAGCACAGCATCGTACCCA TCCCAATGCCGTTCTCAAAAT

Acadvl(mouse) GTTCCCATACCCATCTGTGC GTGTCGTCCTCCACCTTCTC

Acadm(mouse) TTGAGTTGACGGAACAGCAG TTGATGAGAGGGAACGGGTA

SOD2(mouse) TCTCAACGCCACCGAGG AGACCCAAAGTCACGCT

SOD3(mouse) TAGGACGACGAAGGGAGGT GGTCCCCGAACTCATGC

Western Blot and
Co-immunoprecipitation
Proteins were collected from the cultured NRVMs and murine
hearts by a mixture of RIPA buffer (Beyotime Biotechnology,
Shanghai, China) with protease inhibitor (Sigma, United States)
(1:100) and quantified by BCA assay (Thermo Fisher). The
primary antibodies used included Anti-β-MHC (1:1000, Abcam,
United States), Anti-N-terminal NT-PGC-1α (1:1000, Abcam,
United States), anti-CRM1 (1:500, Abcam, United States) and
anti-β-actin (1:1000, Bioss, Beijing, China). The secondary
antibody used was a goat anti-rabbit IgG-HRP (1:5000, Santa
Cruz, United States). Immunoreactive bands were detected by
the Pierce ECL Substrate (Pierce Biotechnology, Rockford, IL,
United States) and Gene Gnome Imaging System (Syngene Bio
Imaging) and quantified with the NIH ImageJ software package.
The protein A/G agarose beads were purchased from Santa Cruz
Biotechnology, and the CO-IP protocol was carried out according
to the manufactures’ guidelines.

Statistical Analyses
Quantitative data were displayed as the mean ± SEM (standard
error of mean). A normal distribution test was performed to
determine if parametric or non-parametric tests should be used.
Comparisons between the two experimental groups were based
on a two-tailed t-test while comparisons of the parameters across
more than three groups were analyzed by ANOVA followed by a
Dunnett’s T3 for post hoc multiple comparisons. For all analyses,
differences were considered to be statistically significant at a
value of P < 0.05.

RESULTS

Downregulation of PGC-1α and
NT-PGC-1α in Mice With MI-Induced
Heart Failure
Previous studies have thoroughly described alterations in cardiac
metabolic substrates during HF. Here, we used a model of
HF that was induced by MI. Four weeks after the operation,
the myocardial expression of PGC-1α and NT-PGC-1α were
significantly decreased (compared to sham-operated mice; n = 5;
P < 0.05), as determined by Western blot (Figures 1A,B). The
representative photographs of the immunohistochemical staining
are shown in Figures 1C,D.

Antihypertrophic Effects of the
CRM1-Inhibitor Selinexor
We aimed to determine an appropriate concentration of the
CRM1-inhibitor Selinexor for NRVMs. Cells were exposed to
different concentrations of Selinexor for a range of durations
and NRVM viability was assayed using the CCK8 cell viability
assay. We discovered that cells exposed to less than 600 nM
Selinexor for 4 h did not show any significant differences
compared to controls (Figures 2A–D). However, a prolonged
reaction time with Selinexor led to decreased OD values. Thus,
we applied 50 nM Selinexor to stimulate the NRVMs for 4 h. The
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FIGURE 1 | Decreased levels of PGC-1α and NT-PGC-1α in myocardial infarction mice. A representative western blot (A) and relative quantification to β-actin (B) of
PGC-1α and NT-PGC-1α in mice subjected to a sham operation or MI. ∗∗p < 0.01 compared to the sham group, n = 4–5 in each group (t-test). The representative
photomicrographs of HE staining (C) and IHC of total PGC-1α (D) in sham and MI mice.

antihypertrophic effect of CRM1 inhibitors was demonstrated
in previous studies (Harrison et al., 2004; Monovich et al.,
2009; Chahine et al., 2015). Here, we verified that Selinexor
can restrict PE- and AngII-induced hypertrophy in NRVMs
and visualized the cell’s cross-sectional areas using Phalloidin
staining and confocal microscopy (Figure 3A). The area of
the NRVMs is displayed using a micrometer scale (µm2). As
expected, the control group was smaller compared to the PE
group (1,148.89 ± 73.85 µm2 vs. 2,756.683 ± 333.48 µm2,
p < 0.01) and the AngII group (1,148.89 ± 73.85 µm2

vs. 1,861.60 ± 243.38 µm2, p < 0.05), while the PE group
had a larger cell cross-sectional area than the PE+Selinexor
group (2,756.683 ± 333.48 µm2 vs. 1,818.56 ± 209.08 µm2,
p < 0.05). Similarly, the AngII group had a larger cell cross area
compared to the AngII + Selinexor group (1,861.60 ± 243.38 vs.
1,247.71 ± 113.65, p < 0.05) (Figure 3B). Further investigation
showed that Selinexor can inhibit the expression of β-MHC that
is induced by PE (PE vs. PE+Selinexor: 0.01637 ± 0.00239 vs.
0.00973± 0.00047, p< 0.05) (Figures 3C,D). These results show

that the CRM1-inhibitor Selinexor, which displays oral activity,
can restrict cardiac hypertrophy in vitro.

Regulation of NT-PGC-1α Distribution by
CRM1 Inhibitor and NLS (Nucleus
Localization Sequence)
Neonatal rat ventricular myocytes were transfected with
adenovirus-mCherry-NT-PGC-1α and adenovirus-mCherry-
NLS-NT-PGC-1α to investigate the role of CRM1 inhibitors
in the regulation of NT-PGC-1α. Following the infection, the
cells were then treated with 50 nM Selinexor. After stimulation,
the cells were stained with Hoechst 33258 and visualized
with confocal microscopy. We determined that Selinexor
and NLS can increase the nuclear density of mCherry, and
the nucleus/cytoplasm mean densities were also measured.
Comparisons between the AdV-NT-PGC-1α and AdV-NT-
PGC-1α+Selinexor groups showed significant differences
(0.48 ± 0.01 vs. 0.93 ± 0.03, respectively, p < 0.001); the
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FIGURE 2 | Results of the Cell Counting Kit-8 assay to determine cell viability after exposure to Selinexor. NRVMs were exposed to different concentrations of
Selinexor and incubated for (A) 4 h, (B) 8 h, (C) 12 h, and (D) 24 h, respectively. ∗P < 0.05, compared to the corresponding control group.

AdV-NLS-NT-PGC-1α group had lower mean density than
the AdV-NLS-NT-PGC-1α+Selinexor group (1.26 ± 0.09 vs.
0.61± 0.04, respectively, p< 0.001), while comparisons between
the AdV-NT-PGC-1α and Adv-NLS-NT-PGC-1α group showed
significant differences (0.48 ± 0.01 vs. 0.61 ± 0.04, respectively,
p < 0.05) (Figures 4A,B). Furthermore, we discovered that
CRM1 interacted with NT-PGC-1α and PGC-1α in the NRVMs
through the use of Co-IP (Figure 4E). These findings suggest
that the trafficking of NT-PGC-1α between the nucleus and
cytoplasm are likely dependent on the interaction between
CRM1 and its corresponding protein.

Relative mRNA Expression After
Shuttling NT-PGC-1α Into the Nucleus
We discovered that Selinexor and NLS could dramatically
increase the nuclear distribution of NT-PGC-1α. Thus, we
explored relative mRNA expression after the shuttling of NT-
PGC-1α into the nucleus. We discovered that the NRVMs
that were transfected with AdV-NLS-NT-PGC-1α and exposed
to Selinexor could increase their relative amount of mRNA
expression compared to cells that were transfected with AdV-
NLS-NT-PGC-1α (Figures 4C,D). These genes include PPAR-α
(1.00 ± 0.25 vs. 1.74 ± 0.21, p < 0.05); Tfam (1.00 ± 0.26 vs.
1.98 ± 0.22, p < 0.05); ERR-γ (1.00 ± 0.30 vs. 2.42 ± 0.29,
p < 0.01); CPT1b (1.00 ± 0.01 vs. 5.82 ± 1.28, p < 0.05); PDK4

(1.00 ± 0.58 vs. 10.00 ± 2.12, p < 0.05); and Nrf2 (1.00 ± 0.52
vs. 5.96 ± 0.78, p < 0.001). These results suggest that NT-PGC-
1α might function in nuclear transcription, and could partially
compensate for the function of full-length PGC-1α. Additionally,
most of the genes mentioned above have beneficial cardiovascular
effects as reported by previous studies.

The Influence of Selinexor on Cardiac
Function and mRNA Expression in
MI-Induced Heart Failure Mice
If CRM1 inhibitors exhibit cardiovascular protective effects,
they might be due to their antihypertrophic effects and the
shuttling of NT-PGC-1α into the nucleus. To test this hypothesis,
we gavaged Selinexor to C57BL/6j mice that then underwent
coronary artery ligation. If Selinexor could ameliorate energy
metabolism in vivo, then it would likely enhance the ejection
fraction (EF) or reduce the left ventricular end-systolic diameter
(LVESD) in mice. We performed an echocardiogram on these
mice at 1 week and 4 weeks post-myocardial infraction but the
results were not significant between the Selinexor and control
groups (Figures 5A,B and Supplementary Table S1). However,
we found that the Selinexor treatment reduced HW/BW (the
ratio of heart weight and body weight) and HW/TL (the ratio of
heart weight and tibia length) in the MI-mice (Figures 5C,D),
which is in line with the cellular findings. Furthermore, there
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FIGURE 3 | Effects of the CRM1-inhibitor Selinexor on cardiac hypertrophy. (A) Representative photomicrographs of the actin-tracker green stain in NRVMs that are
exposed to PE, AngII and Selinexor, and (B) their relative cross-sectional areas. (C,D) The expression of β-MHC in cells that were stimulated by PE and Selinexor as
detected by western blot. ∗P < 0.05, compared to the corresponding control group (n = 4).

were no significant differences in the relative mRNA levels of
PGC-1α between these groups, except for SOD3 (Figure 6).
These findings indicate the potential effects of Selinexor in
heart remodeling.

DISCUSSION

In the present study, we suggest that the antihypertrophic
effects of the CRM1 inhibitor Selinexor might be independent
of NT-PGC-1α. We found that PGC-1α and NT-PGC-1α were
decreased in the MI-induced HF mouse model, which supports
the role of energy metabolism defects in HF (Warren et al., 2017).
Although the mechanisms of PGC-1α have been fully elucidated,
there are relatively few studies that have investigated the role
of NT-PGC-1α in the heart (Liu et al., 2018). Additionally, the
trafficking of NT-PGC-1α between the nucleus and the cytoplasm
by CRM1 inhibitors in previous studies was only demonstrated in
other cell lines (Chang et al., 2010). Therefore, CRM1 might be a
promising target in HF due to its antihypertrophic effects and its
regulation of NT-PGC-1α.

We detected the antihypertrophic effects of a CRM1 inhibitor
that have been confirmed in previous studies (Harrison et al.,
2004; Monovich et al., 2009; Chahine et al., 2015). Our results

suggest that the CRM1 inhibitor Selinexor can alleviate PE- and
AngII-induced cardiac-hypertrophy and inhibit the expression
of β-MHC induced by PE. Thus, it is plausible that the
antihypertrophic effects of Selinexor are achieved by trafficking
NT-PGC-1α between the nucleus and the cytoplasm.

To explore the role of nuclear NT-PGC-1α, we utilized an
adenovirus that expresses a NLS-fused protein to infect NRVMs
and treated the NRVMs with Selinexor. We found that cells
exposed to Selinexor slightly increase their nuclear concentration
of NT-PGC-1α, but cells that express NLS-NT-PGC-1α and are
exposed to Selinexor dramatically increase their nuclear content
of NT-PGC-1α. These results agree with previous studies that
showed CRM1 inhibitors can lead to the retention of nuclear
NT-PGC-1α levels (Chang et al., 2010; Shen et al., 2012). Zhang
et al. (2009) suggested that NT-PGC-1α lacked the structure of
the NLS in its C terminus and that, under the influence of the
nuclear exporting sequence (NES), NT-PGC-1α is predominantly
distributed in cytoplasm. The CRM1 protein affects protein
trafficking between the nucleus and the cytoplasm (Lu et al.,
2015), which is a reported mechanism in the regulation of NT-
PGC-1α subcellular distribution (Chang et al., 2010; Shen et al.,
2012). Chang et al. (2010) reported that the CRM1-inhibitor
leptomycin B (LMB) resulted in NT-PGC-1α being retained in
the nucleus and increase its nuclear concentration.
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FIGURE 4 | Regulation of the distribution of NT-PGC-1α by the CRM1 inhibitor and relative mRNA expression after NT-PGC-1α shuttling into the nucleus. (A) The
influence of the CRM1 inhibitor Selinexor and the NLS (nuclear localization sequence) on the subcellular distribution of NT-PGC-1α, and (B) the mean density ratio of
the nucleus/cytoplasm. ∗P < 0.05, ∗∗P < 0.05 compared to the control group, n = 3–5 in each group. (C,D) The relative mRNA expression after NT-PGC-1α is
shuttled into the nucleus by Selinexor and NLS in NRVMs that are overexpressing NLS-NT-PGC-1α. ∗P < 0.05, ∗∗P < 0.01 compared to the corresponding group
with NLS-NT-PGC-1α overexpression, n = 6–9 in each group. (E) Co-IP of PGC-1α, NT-PGC-1α, and CRM1.

In this study, we confirmed the interaction between CRM1
and both NT-PGC-1α and PGC-1α by immunoprecipitation.
Furthermore, we showed that the expression of mRNAs
involved in mitochondrial function are increased after
NT-PGC-1α is shuttled into the nucleus. Collectively,
these data indicate a possible mechanism of a CRM1
inhibitor in the heart, by which the retention of
NT-PGC-1α in the nucleus is able to respond to
cellular energy demands.

However, in vivo applications of Selinexor did not
improve LV ejection fractions, had no effect on the
expression of genes involved in energy metabolism, and
even reduced the expression of SOD3, which indicates
that it might be involved with other mechanisms and
could be associated with toxicity. Nevertheless, Selinexor
reduced the ratios of HW/BW and HW/TL, which likely

fulfills an antihypertrophic role that is independent of
NT-PGC-1α shuttling.

There are some plausible explanations for the in vivo
results. First, the CRM1 inhibitor is unable to dramatically
increase the levels of nuclear NT-PGC-1α without a fused
NLS, and mice do not have the fused NLS in NT-PGC-
1α. Second, myocardial infraction is accompanied by severe
oxidative stress, which might dampen the expression of
NT-PGC-1α. This is supported by previous reports of the
inhibition of NT-PGC-1α by H2O2-treated medium (Choi
et al., 2014). Third, high doses of Selinexor might induce
toxicity, which would restrict higher doses in mice. Although
we failed to identify any significant effects of the CRM1
inhibitor on cardiac energy metabolism, the shuttling of
NT-PGC-1α into the nucleus remains a possible method
to ameliorate metabolic dysfunction (Chang and Ha, 2017).
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FIGURE 5 | Echocardiography results and HW/BW and HW/TL ratios in MI-mice treated with Selinexor. (A) The ejection fraction (B) in MI-mice treated with Selinexor
or vehicle post-myocardial infraction was detected by echocardiogram at 1 week and at 4 weeks (n = 12, 18, 27, 27, and 25 in sham mice, MI-1-week-DMSO,
MI-1-week-Selinexor, MI-4-week-DMSO, MI-4-week-Selinexor, respectively). The ratio of (C) HW/BW and (D) HW/TL in MI-mice gavaged with Selinexor (∗∗P < 0.01
compared to the corresponding group).

FIGURE 6 | mRNA expression in MI-mice treated with Selinexor. Cardiac mRNA expression in WT mice treated with Selinexor and vehicle post-MI at 1 month (n = 5
in each group, ∗P < 0.05 compared to the corresponding group).

Additionally, recent studies show that cytoplasmic NT-PGC-1α

interacts with some mitochondrial proteins (Choi et al., 2013;
Chang and Ha, 2017), which indicates its bilateral effects in both

the nucleus and the cytoplasm. Further studies are required
to determine if the retention of NT-PGC-1α in the nucleus is
associated with any additional impairments.
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CONCLUSION

Taken together, our findings indicate that Selinexor enhances the
expression of several metabolic genes in the presence of NT-
PGC-1α overexpression when using an in vitro model and that
its antihypertrophic effects might be independent of NT-PGC-
1α shuttling.
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