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ABSTRACT
In this research, the mean monthly groundwater level with a range of 3.78m in Qoşaçay plain, Iran,
is forecast. Regarding three different layers of gated recurrent unit (GRU) structures and a hybrid of
variational mode decomposition with gated recurrent unit (VMD-GRU), deep learning-based neu-
ral network models are developed. As the base model for performance comparison, the general
single-long short-term memory-layer network model is developed. In all models, the module of
sequence-to-one is used because of the lack of meteorological variables recorded in the study area.
For modeling, 216 monthly datasets of the mean monthly water table depth of 33 different moni-
toring piezometers in the period April 2002–March 2020 are utilized. To boost the performance of
the models and reduce the overfitting problem, an algorithm tuning process using different types
of hyperparameter accompanied by a trial-and-error procedure is applied. Based on performance
evaluation metrics, the total learnable parameters value and especially the model grading process,
the new double-GRU model coupled with multiplication layer (×) (GRU2× model) is chosen as the
best model. Under the optimal hyperparameters, the GRU2× model results in an R2 of 0.86, a root
mean square error (RMSE) of 0.18m, a corrected Akaike’s information criterion (AICc) of −280.75, a
running time for model training of 87 s and a total grade (TG) of 6.21 in the validation stage; and the
hybrid VMD-GRU model yields an RMSE of 0.16m, an R2 of 0.92, an AICc of −310.52, a running time
of 185 s and a TG of 3.34.
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1. Introduction

In groundwater hydrology, the hydraulic head is regarded
as one of the most significant criteria, which has been
chiefly evaluated as groundwater level (GWL) with natu-
ral and unnatural bases. It determines the potentiometric
condition of water recharge, discharge and storage of
aquifers (Conlon et al., 2005). Continuous monitoring of
GWL over time provides a valuable information source
for hydrologists to understand the evolution and geome-
try of aquifers, particularly spatial hydraulic heterogene-
ity and anisotropy, by analyzing diverse spatiotemporal
attributes, including the hydrometeorological cycle and
groundwater resources development under global long-
standing climate unpredictability and human-caused
influences, and applying rational policies on logical water
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resources management (Asadi et al., 2020; Bekesi et al.,
2009; Valdes et al., 2014).

Assessing long-term groundwater resources in a
potential agronomic site requires specific knowledge,
high expenditure on the installation of observation
piezometers, and the gathering of diverse data, such
as hydrogeological and meteorological parameters, over
time. It is unreliable to estimate GWL through conven-
tional linear and deterministic statistical models since
GWL is neither a continuous stationary multifactor
hydrological time series nor a recurrent physical pro-
cedure with a lagged response (Post & von Asmuth,
2013; Schuurmans et al., 2007). Consequently, it is vital
to develop robust approaches that take into consider-
ation the dynamic behavior of observations such as

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/19942060.2022.2104928&domain=pdf&date_stamp=2022-08-13
http://orcid.org/0000-0002-2898-3681
http://orcid.org/0000-0001-6457-161X
mailto:20200420@wzu.edu.cn
mailto:shamshirbands@yuntech.edu.tw
mailto:amir.mosavi@kvk.uni-obuda.hu
http://creativecommons.org/licenses/by/4.0/


1656 H. LIN ET AL.

heteroscedasticity, non-stationarity and autoregression
(Fathian et al., 2016). It can thus be inferred that estimat-
ing monthly scale GWL for irrigation purposes is often
thought of as a burdensome task compared to surface
water computations (Favero et al., 2007).

In the past few decades, different methods have been
developed to assess GWL fluctuations, which are gen-
erally divided into four subgroups: physical, statistical,
artificial intelligence (AI) and hybrid methods. Because
of the extreme randomness of GWL fluctuations, it is
difficult to determine which model has the best esti-
mation performance. Each model has its strengths and
weaknesses, andmanymodels are site dependent. Hence,
it is hard to forecast all GWL fluctuation series with a
definite model. Since the late 1960s, numerous studies
have been carried out on the numerical emulation of
groundwater quality and quantity (e.g. solute and con-
taminant transport) in porous media by different meth-
ods (Anderson et al., 1992;Dalkiliç &Gharehbaghi, 2021;
Gharehbaghi, 2021a, 2021b; Henriksen et al., 2008). This
research contemplates flexible and reliable techniques for
solving groundwater flow problems in complicated field
conditions (Hemker&Bakker, 2006). Nevertheless, emu-
lating the groundwater flow by numerical methods for
various real-world problems is too difficult owing to the
uncertainty and nonlinearity corresponding to influen-
tial parameters such as conductivity and hydraulic gradi-
ent, depth of saturated zone, long computational time for
emulation, rate of discharge and recharge, and hydraulic
head (Gómez-Hernández &Gorelick, 1989; Kovács et al.,
2015).

To avoid the restrictions and disadvantages of physi-
cally based methods, several empirical techniques have
been developed as a significant and renowned branch
of machine learning models (MLMs). They are viewed
as dependable methods with acceptable precision and a
lower computational time for forecasting complex phe-
nomena in different sciences by making connections
between input/output without requiring a basic knowl-
edge of physical relationships (Ahmadi et al., 2020;
Choubin et al., 2019; Ghalandari et al., 2019; Golestani
Kermani et al., 2019; Joloudari et al., 2020; Mahmoudi
et al., 2021; Qasem et al., 2019; Shabani et al., 2020;
Taherei Ghazvinei et al., 2018; Torabi et al., 2019).

The application of empirical techniques in geosciences
is increasing rapidly, mainly in the prediction of extreme
events such as GWL fluctuations (Mosavi et al., 2018).
Many kinds of research have been performed using tra-
ditional MLMs for the prediction of GWL in differ-
ent places. Shiri et al. (2013) utilized several classical
soft computing methods to predict GWL fluctuations
with meteorological impact implications in Hongcheon
Well station, South Korea. The results of the prediction

showed that for the 1-day-ahead prediction, gene expres-
sion programming (GEP) and adaptive neuro-fuzzy
inference system (ANFIS) models presented small test-
ing values (t-statistic) of 0.86 and 0.126, respectively, and
high significance levels of 0.932 and 0.9, respectively.
Sharafati et al. (2020) developed a novel AI model called
gradient boosting regression (GBR) for forecasting GWL
over Rafsanjan aquifer in Iran. Using correlation analysis,
depending upon the lead periods, the R2 value changed
from 0.66 to 0.94. MLM-based deep neural network
(DNN) models, which are an advanced type of recurrent
neural network (RNN), are receiving more attention in
various sciences (Band et al., 2020; Nabipour et al., 2020).
Deep learning (DL) algorithms are black-box methods
in which the input/output data are directly connected
through a huge-dimension matrix of biases and weights
in the hidden layers. In the training process, through
the intrinsic ability of this method, the network feed-
back to the output of calibration data is matched using
an optimization algorithm (Mosavi et al., 2020; Rajaee
et al., 2019). The emulation results rely on the quantity
and quality of calibration data and also the construc-
tion of the network. The increased use of DL models,
with gated recurrent unit (GRU) and long short-term
memory (LSTM) neural networks as improvised archi-
tecture, provides vast opportunities for improvements in
the fields of water resources and hydrology (Shen, 2018).
Although a time scale was embedded into the RNN, the-
oretical and practical experiments confirmed that con-
ventional gradient-based networks cannot dependably
operate with information from more than the last 10
time steps (Gers et al., 1999). To permit the networks to
recall inputs for a long period, an explicit memory, called
LSTM, was formulated to enhance their ability (Hochre-
iter & Schmidhuber, 1997). Consequently, the exploding
and vanishing gradients that arise in RNNs could be cir-
cumvented by substituting the traditional neuron in the
hidden layer with an LSTM cell, which has a periodically
self-connected linear component. TheGRU, according to
Cho et al. (2014), has an inherent capability for learn-
ing long period dependencies using raw time-series data.
One benefit of such a model is that it can efficiently cap-
ture nonlinear relationships in historical GWL datasets
(Mosavi et al., 2018).

So far, LSTM-based models have been effectively used
for modeling in the field of hydrological science (Bowes
et al., 2019; Jeong et al., 2020; Vu et al., 2021; Yin
et al., 2020; Zhang et al., 2018). Nevertheless, inadequate
research has been conducted on different applications of
GRU-based models for complex hydrological processes
such as GWL prediction. Ghasemlounia et al. (2021) pre-
dictedGWLfluctuations of four observation piezometers
in an agrarian region through the structure of the novel
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bi-directional long short-termmemory (BiLSTM)-based
DNN model, and found the BiLSTM2× to be the best
model. This model resulted in a root mean square error
(RMSE) of 0.17m and an R2 of 0.89 in piezometer 4, with
a range of 4.49m. Gao et al. (2020) forecast short-time
runoff with an artificial neural network (ANN), GRU
and LSTMneural networks without using time-step opti-
mization in sample generation. The results confirmed
that DNN models outperformed the typical ANN and
their estimation precision was raised by increasing the
time step. Finally, GRU was chosen as the best method
as it needed less running time for model training. Chen
et al. (2021) developed a surrogate method for ground-
water emulation using GRU to enhance the efficacy of
parameter autocalibration and global sensitivity analy-
sis. The results showed that the GRU surrogate combined
with the particle swarm optimization (PSO) algorithm
could be used to adopt high-dimensionality parame-
ter calibration tasks with outstanding ability. Pan et al.
(2020) forecast the water level in the Yangtze River using
different models. They reported that for predicting the
8 o’clock water levels for the next 5 days, the ability of
the hybrid convolutional neural network–gated recur-
rent unit (CNN-GRU) model with three water stations
was greater than the other applied models. This model
resulted in an RMSE of 0.13, a mean relative error of
3.13% and aNash–Sutcliffe efficiency (NSE) coefficient of
0.97 as the average value of three seasons. Jeong and Park
(2019) applied GRU, LSTM, autoregressive exogenous
(ARX) and nonlinear autoregressive exogenous (NARX)
models to forecast GWL. They found that LSTM and
NARX neural network models worked better than ARX
and GRU for monitoring GWL.

In recent years, many scientists have investigated
hybrid models. These models can utilize the benefits of
diverse models by incorporating their functions. Typi-
cal hybrid models are data preprocessing and parameter
choice and optimization. The decomposition technique is
one of the generally employed data preprocessing mod-
els. Commonly used decomposition methods include
singular spectrum analysis (SSA), variational mode
decomposition (VMD), empirical mode decomposition
(EMD) and wavelet decomposition. VMD (Dragomiret-
skiy and Zosso, 2013) is a groundbreaking non-recessive
technique that was developed to disentangle nonlinear
eurhythmics from intricate data signals with extreme
computational efficacy. InVMD, a variationalmodel tries
to find a sequence of elements with an assorted rate of
recurrence bands and time resolutions (Fang et al., 2019;
H. Li et al., 2019). In contrast to EMD, VMD can success-
fully improve the procedure of the integration problem,
where one element encompasses two or further subsig-
nals with distinct variances or one subsignal is separated

into two or more elements with comparable traits (Fosso
and Molinas, 2018; Naik et al., 2018). Several investiga-
tors have developed hybrid decomposition-basedmodels
for forecasting the time-seriesGWL (Bahmani et al. 2020;
Gehrels et al. 1994; Nourani & Mousavi, 2016; Rezaie-
balf et al. 2017). Zare and Koch (2018) estimated GWL
fluctuations by ANFIS and hybrid wavelet–ANFIS/fuzzy
C-means (FCM) clustering approaches in Miandarband
plain, Iran. They concluded that the developed meth-
ods could be used with satisfactory precision; the hybrid
wavelet–ANFIS approach with a Symlet mother wavelet
outperformed the other models, with RMSE and R2 val-
ues of 0.17 and 0.984, respectively, in the validation
stage. Bahmani and Ouarda (2021) developed differ-
ent hybrid decomposition models for predicting GWL.
The results confirmed the hybrid M5 model tree with
wavelet transform (WT-M5) model as the best tech-
nique, with an R2 value of 0.91 and RMSE of 0.26 in
the validation stage. Azari et al. (2021) used a coupling
preprocessing method with linear stochastic models (i.e.
a linear model with one autoregressive and one sea-
sonal moving average parameter) to develop a novel
model for GWL prediction. The statistical evaluation
of this model confirmed its acceptable performance for
GWL estimation, with a scatter index (SI) of 0.0004,
root mean squared relative error (RMSRE) of 0.0004,
corrected Akaike’s information criterion (AICc) of 151
and mean absolute percentage error (MAPE) of 0.0003.
Wu et al. (2021) predicted GWL using different stand-
alone and hybrid models. They found that the hybrid
wavelet transform–multivariate long short-term mem-
ory (WT-MLSTM) technique, which integrates exterior
correlated parameters into forecasts, worked better than
the traditional methods. Azizpour et al. (2021) estimated
GWL using the self-adaptive extreme learning machine
(SAELM) and the hybrid SAELM with WT models.
They reported that the hybrid (WT-SAELM) model was
the best model, with variance accounted for (VAF),
NSE and correlation coefficient (R) values of 97.450,
0.973 and 0.988, respectively. Tao et al. (2022) reviewed
advanced MLMs developed to predict GWL in together
with accomplishments in this field from 2008 to 2020
(138 papers). They evaluated the types of methods, data
extent, time scale, input/output variables, performance
metrics applied and the excellent models recognized.

In this study, since the nature of modeling con-
sists of temporal dependencies, GRU neural networks
as emulators are investigated as a suitable possibility
to predict GWL in Qoşaçay plain, Iran. Thus, several
GRU-based models with the sequence-to-one regres-
sion module are developed because of the lack of
meteorological variables recorded in the study area. The
developed models are a general single-gated recurrent
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unit-layer network, a simple double-gated recurrent unit-
layers network (GRU2), a novel proposed double-gated
recurrent unit model coupled with multiplication layer
(×) (GRU2×)-layers network and a hybrid variational
mode decomposition–gated recurrent unit (VMD-GRU)
model. GRU2× is a state-of-the-art coupling version of
the GRU2-layers network model with a multiplication
layer (×), and the hybrid VMD-GRU model is a new
combination of VMD with a general single-GRU-layer
network model. Of these models, the hybrid VMD-GRU
and GRU2× models are considered as the newly com-
bined version models among the traditional DL models,
which improve the accuracy of prediction. The novelty of
the present research lies in developing an advanced new
architecture of the GRU2× neural network and hybrid
VMD-GRUmodels with the sequence-to-one regression
module for predicting elaborate natural events such as
the mean monthly time-series GWL. To the best of our
knowledge, despite many studies having been performed
for estimating GWL using the conventional architecture
of DL-basedmodels, no studies have been reported in the
literature aimed at the application of the exceptional and
newly proposedGRU2× and hybrid VMD-GRUmodels.

The scope and main purposes of the present research
are:

(1) To develop different layer structures of GRU-based
and hybrid VMD-GRUmodels for the prediction of
GWL using a long-term water table depth with 33
different monitoring piezometers with time-series
traits without operating meteorological variables in
Qoşaçay plain.

(2) To determine the ideal numbers of different hyper-
parameters in eachmodel for better configuration of
the developed models, to reduce the adverse influ-
ences of the overfitting problem, using a trial-and-
error process.

(3) To assess and match the outcomes of the emulation
to determine the perfect model through statistical
metrics.

2. Site description and data collection

Qoşaçay plain is located to the south of Lake Urmia
in Qoşaçay town, West Azerbaijan Province, Northwest
Iran, with an area of approximately 1100 km2. It has
coordinates of 46°06′10′′E latitude and 36°58′10′′N lon-
gitude, lies 1314m above sea level, comprises cultivable
land, andhas semi-arid and coldweather. Figure 1 depicts
the geographical location of the study district.

Since the real evapotranspiration ratio (ETa) is high
in summer, groundwater stores are used as a supple-
mentary or alternative source. The irrigation period is

fromApril to September and the average annual potential
evapotranspiration (ETPot) is about 900–1500mm (Jalil-
vand et al., 2019). Peak rainfall generally occurs from
January to May. The mean annual temperature and pre-
cipitation were reported to be 12°C and 284mm, respec-
tively (EARWO, 2020). Since this area is very vulner-
able to drought, groundwater plays an important role.
The stream direction of the groundwater is from the
south-east to the north-west of the plain (Norouzi &
Moghaddam, 2020).

To predict the average monthly GWL in the study
region, the current investigation used 216 average
monthly measured water table depths from 33 monitor-
ing piezometerswith different statistical characteristics in
the period of April 2002–March 2020. Figure 2 shows the
sites of the observation piezometers in Qoşaçay plain.

Figure 3 presents the long period time series of average
monthlyGWLbetweenApril 2002 andMarch 2020 in the
study area.

Descriptive statistics of the average monthly GWL
in Qoşaçay plain are presented in Table 1, where CV
and STDV are the coefficient of variation and standard
deviation, respectively.

Based on Table 1, it can be seen that the variation
trend in GWL is very unsteady, with an extremely com-
plicated basic nature and nonlinearity, owing to the high
range, skewness and kurtosis. Therefore, robust accurate
techniques are required for modeling.

3. Methodology

In the current study, to forecast the time-series GWL,
different GRU-based neural network models are devel-
oped. In this regard, first, all datasets are normalized to
zero average and unit variance, as suggested by Lawrence
et al. (1997). Then, the average monthly recorded GWL
datasets are divided into two subsets: the first 70% of
the total datasets (150 months), between April 2002 and
September 2014, is used for calibration ofmodels; and the
remaining 30%of the total datasets (66months), between
October 2014 and March 2020, is used for validation.

3.1. Gated recurrent unit (GRU) cell structure

The RNN, which is a specific type of neural network
model, is very appropriate for time-series and serial data
modeling. In RNNs, an unfurled loop cell induces to
inflow the previous data. Nevertheless, because of the
explosion gradient dilemma, the accuracy of the typical
RNN model diminishes during the learning process of a
long period sequence during backpropagation (Rangapu-
ram et al., 2018).
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Figure 1. Geographical location map of the study district.

Figure 2. Locations of the 33 piezometers in Qoşaçay plain, West Azerbaijan Province, Iran.

GRU, as a special kind of RNN, has been developed
to preclude the fundamental difficulties in the common
RNN using a specific infrastructure (Sak et al., 2014). It
unites three gates of LSTM i.e. input, forget and output,
into two control gates: Zt (update gate) and rt (reset gate).
The interior structure of a GRU memory cell is depicted
as a sequence diagram in Figure 4.

As described in Figure 4, there is an input layer
comprised of several neurons, where the number of
neurons is controlled through the dimensions of fea-
ture space. Correspondingly, the number of neurons
in the output layer corresponds to the output space
(Cho et al., 2014). The structure of the GRU can be
formulated using Equations (1) and (2) (Cho et al.,
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Figure 3. Time-series plots of observed average monthly groundwater level (GWL) between April 2002 and March 2020 (216 months).

Table 1. Statistical factors of the average monthly groundwater level (GWL) between April 2002 and March 2020 in the study area.

Variable Data period Min. Max. Range Mean STDV Skewness CV

GWL (m) Whole period 3.94 7.72 3.87 5.71 0.86 0.023 0.15

Note: STDV = standard deviation; CV = coefficient of variation.

Figure 4. Internal structure of a gated recurrent unit (GRU)mem-
ory cell.

2014):

ht = (1 − zt) ∗ ht−1 + zt ∗ h′
t (1)

h′
t = tanh(rt ∗ (Uhht−1) + Whxt + bh) (2)

where ht , ht−1 and h′
t are the hidden layer of step t, the

hidden layer of step t− 1 and the present new state of
step t, which are considered as a summation of the infor-
mation at ht−1 and the input information at step t, xt .
The network weight matrices and bias vectors are sig-
nified as U, W and b, which are attained in the training
phase. The hidden layer contains memory cells that take
into consideration the principal functions of the GRU
network.

GRU uses control gates to adjust the retaining, for-
getting and updating of sequence data. zt determines
the volume of ignored previous information and newly
added data, while rt controls the volume of the above
information which is passed into the new state. zt and rt
can be formulated by the following equations (Cho et al.,
2014):

zt = σ(Wzxt + Uzht−1 + bz) (3)

rt = σ(Wrxt + Urht−1 + br) (4)

where xt denotes the input at step t, and σ and tanh are
the logistic sigmoid and hyperbolic tangent functions,
respectively.

In contrast to LSTM, GRU has no remote memory
cells; instead, it operates a single hidden state ht to send
information over time steps. Both GRU and LSTM per-
form in nearly the same way; nonetheless, as GRU has a
lower number of learnable parameters and a more solid
structure, it can converge readily, when the volume of
data is not too big (R. Fu et al., 2016; Greff et al., 2016).

3.2. Variational mode decomposition (VMD)

As an advanced data decomposition technique, the VMD
algorithm takes advantage of variational modes to gener-
ate a certain number of distinct elements for determining
the variational problem. Based on the set modes num-
ber, the VMD algorithm separates a signal into certain
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bandwidthswith diverse center frequencies and upgrades
progressively by operating the alternating direction mul-
tiplier optimization method (ADMM) (Bai et al., 2021;
Wang et al., 2015).

In VMD, it is presumed that every model has a band-
width with a given center rate of recurrence. In more
detail, it is supposed that a basic signal f (t) is broken into
K dissimilar separate modes uk(t) to minimize the total
computed bandwidth of every mode, where every mode
is accumulated around a center frequency wk (He et al.,
2019; Nechikkat et al., 2015). A constrained variational
problem, depicted by Equation (5), is applied to answer
the decomposition problem for a time series f (t):

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

uk(t),wk(t)

{
K∑

k=1

∥∥∥∂t [(δ(t) + j
π t

)
⊗ uk(t)

]
e−jwk(t)

∥∥∥2
2

}
s.t.

K∑
k=1

uk(t) = f (t)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(5)

where K is the number of modes and t is time. uk(t) and
wk(t) are the decomposed modes and relevant center fre-
quencies, respectively. δ(t) is the Dirac distribution and j
is an imaginary unit, so that j2 = −1. ⊗ is the convolu-
tion operator and f (t) is the tth data of the basic signal
(Wang et al., 2015).

To find the optimal resolution to the constrained vari-
ational problem and progress the performance efficiency,
a quadratic penalty parameter (a) and Lagrange multi-
plier (λ) are applied to obtain an unconstrained version
of Equation (5) (J. Li et al., 2019; Niu et al., 2018). The
augmented Lagrangian L is expressed by the following
formula:

L(uk(t),wk(t), λ)

= a
K∑

k=1

∥∥∥∥∂t [(δ(t) + j
π t

)
⊗ uk(t)

]
e−jwk(t)

∥∥∥∥2
2

+
∥∥∥∥∥

K∑
k=1

uk(t) − f (t)

∥∥∥∥∥
2

2

+
〈
λ(t), f (t) −

K∑
k=1

uk(t)

〉
(6)

The ADMM algorithm, which is a well-known dividing
technique for discrete optimization problems, is applied
to search for the saddle point of the augmented Lagrange
function and solve Equation (6) in the VMD algorithm
(Dragomiretskiy and Zosso, 2013; W. Fu et al., 2019).
In ADMM, decision variables (̂un+1

k ,wn+1
k and λ̂n+1) are

divided into numerous blocks on the basis of their char-
acteristics, and themain problem is separated into several
lesser subproblems of a single block, which will be opti-
mized reiteratively by affixing all other blocks in every
internal sequence (Chang et al., 2016; W. Fu et al., 2020).

Equations (7)–(9) are used to upgrade themode uk(ω)
in the frequency sphere, center frequencies ωk and con-
currently λ, respectively. In the time sphere, the mode
uk(t) is the real section of the inverse Fourier transform
of uk(ω), described by Equation (7).

ûn+1
k =

f̂ (w) −
K∑
i<k

ûn+1
i (w) −

K∑
i>k

ûni (w) + 0.5̂λ(w)

1 + 2a(w − wn
k)

2

(7)

wn+1
k =

∫∞
0 w|̂un+1

k (w)|2dw∫∞
0 |̂un+1

k (w)|2dw
(8)

λ̂n+1(w) = λ̂n(w) + τ

[̂
f (w) −

K∑
k=1

ûn+1
k (w)

]
(9)

where n is the number of repetitions and τ is the time
step of the dual ascent (iterative parameter) signifying the
noise tolerance of VMD. f̂ (w), ûi(w), λ̂(w) and ûn+1

k (w)

are Fourier transforms of f (t), ui(t), λ(t) and ûn+1
k (t),

respectively (Wang et al., 2015).
Once the stopping conditions have been fulfilled, the

whole reiterative optimization procedure in Equation (8)
is stopped; otherwise, the calculation will be repeated
with Equations (7) and (8) until Equation (10) is satisfied.

K∑
k=1

||̂un+1
k − ûnk ||22
||̂unk ||22

< ε (10)

In Equation (10), ε is the convergence tolerance that
affects the reformation error of VMD.

3.3. Model development

As recommended byMaier et al. (2010), the initial archi-
tectural construction of layer network models should be
designed according to the intentions of the investiga-
tion. Therefore, the general single-LSTM layer network
model (model 1) was first developed inMATLAB®

release
2021a (MATLAB 2021). This is taken as our base model
and is used to match the performance of other devel-
opedmodels. Then, to tune the network topology pattern
(NTP) hyperparameter in the general single-GRU layer
networkmodel (model 2), two deeper structures (models
3 and 4) are developed. Finally, model 2 is combined with
the VMD technique to generate the hybrid VMD-GRU
model. Figure 5 illustrates the structure of the designed
models.

As depicted in Figure 5, model 3 is a simple double-
GRUmodel (GRU2), whereas the newly proposedmodel
(model 4) is a double-GRU coupled with multiplication
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Figure 5. Architecture of the designed layer network models. (A) Structure of the general single-long short-termmemory (LSTM)-layer
network model (model 1); (B) structure of the general single-gated recurrent unit (GRU)-layer network model (model 2); (C) structure
of the simple double-GRU-layer network model (model 3); (D) structure of the newly proposed double-GRU layer network coupled with
multiplication layer (×) (GRU2×) (model 4); (E) structure of the hybrid variationalmode decomposition–gated recurrent unit (VMD-GRU)
model.
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layer (×) with the sequence output mode. The number
of layers in the construction of models 1, 2, 3 and 4 is 5,
5, 6 and 7, respectively. In the hybrid VMD-GRUmodel,
the VMD algorithm is applied to decompose the original
time series of GWL into a series of elements to reduce
the complexity and non-stationary of GWL (decomposi-
tion phase). Next, the general single-GRU-layer network
model (model 2) is trained to estimate the complex rela-
tionships among the input/output variables and create
the ultimate outcome by uniting the information from all
extracted subsequences (ensemble phase).

In this research, to achieve a suitable configuration
to reduce the impact of overfitting and improve the
capability of the developed models, the algorithm tun-
ing process, using different types of hyperparameters,
is operated. Because there are no effective instructions
to determine the appropriate hyperparameters in a cer-
tain model and dataset, the current procedure is consid-
ered a time-consuming and arduous undertaking. In this
respect, various scenarios are characterized to determine
the appropriate hyperparameters, in combination with a
trial-and-error procedure by the user.

In the building of the developed models, the input
layer intakes time-series datasets with a size of 1. Since
GWL has a time dimension, time steps on the monthly
scale should be used as an independent variable. To tune
the state activation function (SAF), diverse unions of tanh
and softsign, including softsign–tanh, softsign–softsign,
tanh–softsign and tanh–tanh, in each GRU layer with
the sigmoid gate activation function are used separately.
Moreover, to tune the number of hidden units (NHU),
diverse values in each model are examined.

The multiplication layer multiplies inputs from mul-
tiple neural network layers element-wise. The number
of inputs in this layer is determined characteristically by
the operated program; nonetheless, it has a sole output
(MATLAB, 2021).

DNNs are suitable for assessing large datasets; how-
ever, a very large dataset will cause overfitting problems.
Because a dropout layer provides a functioning regu-
larization system, it has been used to reduce overfit-
ting (Hinton et al., 2012). Theoretically, it automatically
ignores or drops some neurons with a certain probability
rate of P in a layer allocated at each training reiteration
(Srivastava et al., 2014). In this way, it breaks up positions
where network layers coadjust to errors from previous
layers and, consequently, makes the model more robust.
In this emulation, values of 0.3, 0.5 and 0.7 are used to
tune the learning dropout rate (P-rate).

Although LSTM and GRU neural networks have a
high capability to learn long-term time-series datasets,
their fitting ability can be unsatisfactory (Zhang et al.,
2018), and thus a fully connected layer must be operated.

The fully connected layer multiplies the inputs via a
matrix of weights and then adds a vector of bias to
progress the fitting ability of the developed models
(MATLAB, 2021). In this emulation, the input size of this
layer in all developed models in the training phase is set
to ‘auto’ to control its size automatically via the oper-
ated program, and its output size is set to 1. The final
layer of all developed networks is set as a regression out-
put layer to estimate the half-mean-squared-error loss for
regression via the loss function, as follows:

Loss =
∑N

i=1
(ym − yp)2 (11)

where yp and ym are the predicted and measured values
of GWL at time i, respectively.

To update the weights and bias of each network in the
developedmodels, the calibration options are set as in the
Adamoptimization algorithm,with amaximum iteration
number of 2000, a learn rate drop period of 125, an ini-
tial learning rate of 0.001 and a learn rate drop factor of
0.2. In addition, to avoid the vanishing gradients prob-
lem, the initial batch size and gradient threshold are set
to 128 and 1, respectively. These parameters are funda-
mental components of the developed structures, which
have a noticeable influence on their operation. On the
whole, in the hybrid VMD-GRU model, K, α, τ and ε

factors affect the decomposition performance of VMD,
but it is difficult to specify their optimal values. Hence, in
this study, K is deliberated as a key hyperparameter and
is tuned with different values, while the other factors are
set to the default values.

4. Performance evaluation criteria

In this study, the RMSE and coefficient of determination
(R2) were applied to assess the effectiveness and accurate-
ness of the designed model for predicting the time-series
GWL. These statistical metrics are formulated by the
following equations:

RMSE =
√∑N

i=1 (xi − yi)2

N
(12)

R2 =
(∑N

i=1 (xi − μx)(yi − μy)

Nσxσy

)2

(13)

where N is the number of datasets, xi and yi are the mea-
sured and estimated GWL at the time i, σx and σy are
the standard deviation of the measured and estimated
GWL, respectively, and μx and μy are the average of the
measured and estimated GWL, respectively. The optimal
values for these metrics are 0 and 1, respectively.
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5. Results and discussion

5.1. Validation of general single-LSTM and
single-GRUmodels

After numerous experiments, the optimal values of the P-
rate andNHU for the general single-LSTMmodel (model
1) are determined as 0.5 and 100, respectively, and for
the general single-GRU model (model 2) as 0.5 and 30,
respectively. Moreover, the appropriate kind of SAF for
both models is identified as tanh. In the training phase
of the optimal scenario of both models, after 2000 reit-
erations, the final loss, RMSE and learning rate values
are approximately 1E-4, 1E-3 and 1.638E-13, respectively.
After calibration, the model is tested through the testing
datasets. The results of both models with respect to SAF,
P-rate and NHU in the training and testing phases for
emulating GWL in Qoşaçay plain are presented in Tables
2 and 3, respectively, where the bold values signify the
attributes of the optimal scenarios.

Based on Table 2, for both models, with the same
NHU, by increasing the P-rate, the value of the running
time for model training decreases; and with the same P-
rate, by increasing the value of NHU, the running time
increases. Moreover, with the sameNHU and P-rate, sce-
narios with an SAF of tanh are faster than those with
softsign. Besides, in accordance with Table 3, it can be dis-
cerned that in the single-GRUmodel (model 2), too high
a value ofNHU(50) causes to an increase in theRMSE for
the overfitting problem, whereas a smaller value of NHU
(15) reduces the learning ability of the network for the
underfitting problem.

All in all, both models are more precise in the calibra-
tion stage than in the validation stage. Although model 1
is very slightly more accurate than model 2, as it needs
more NHU for convergence, it takes too long in compar-
ison with model 2.

5.2. Validation of double-GRUmodels

Various combinations of activation function were used in
the SAFs of GRU layers in the hidden layer of the sim-
ple double-GRU (GRU2) model (model 3) and the newly
proposed GRU2× model (model 4). In this respect, after
abundant experiments, the softsign–tanh union quali-
fied as the best choice in both models. Likewise, the
optimal values for P-rate and NHU in both models are
determined as 0.5 and 25 (each layer), respectively.

Applying different activation functions in the hid-
den layers of both models results in more complex and
nonlinear functions being learnt. In this regard, the soft-
sign–tanh combination encourages the models to be less
susceptible to the overfitting problem in the training
phase. The softsign activation function can increase the

rapidity of model calibration, while tanh can suitably
capture complex relationships in long-period time series
(Yin et al., 2020). Nevertheless, in this case, the type of
data has a substantial impact the model quality.

In the training stage of the optimal scenario after 2000
reiterations, the values of RMSE and loss obtained for
model 3 are approximately 1E-3 and 1E-4, respectively,
and formodel 4 are approximately 1E-4 and 1E-5, respec-
tively. The value of the learning rate for both models is
1.638E-13. The results of models 3 and 4 with respect to
P-rate and NHU (each layer) in the training and testing
phases are presented inTable 4, where the expression soft-
sign–tanh indicates that the kind of SAF in layers 1 and
2 of the GRU is softsign and tanh, respectively. The bold
values indicate the characteristics of the optimal scenario.

Consistent with Table 4, it can be noticed that, in both
models, too high a value of NHU (50) leads to an increase
in RMSE because of the overfitting problem, but a smaller
value of NHU (15) causes the underfitting problem. Fur-
thermore, for the same NHU, by increasing the P-rate
value, the running time decreases, and at the same P-
rate, as the value of NHU increases, the running time
increases. In summary, both models are more precise in
the calibration stage than in the validation stage, but the
GRU2×model is noticeably faster than theGRU2model.

5.3. Results of the hybrid VMD-GRUmodel

In the hybrid VMD-GRU model, after several tests,
the optimal values of P-rate, NHU and K are 0.5, 128
and 3, respectively, and the appropriate sort of SAF
is determined to be tanh. In the validation stage, the
hybrid VMD-GRU model under optimal hyperparame-
ters results in anR2 of 0.92 and anRMSEof 0.16m. Figure
6 presents the values of RMSE against NHU under the
optimal value of hyperparameters for the K values used
in the validation stage.

5.4. Performance comparison

In the current research, the authors emphasize the sub-
structure and capacity of the developed models (models
1–4) to assess their performance. In this regard, MAT-
LAB 2021a (MATLAB 2021) offers a noteworthy param-
eter, namely, total learnable parameters (TLP), as a vital
measure to judge the operational capacity of the models.
Amodel with optimalNHUandNTP results in an appro-
priate TLP, and, accordingly, encourages a reduction in
the impacts of the overfitting condition. In this direction,
Table 5 presents the TLP values of the developed models
(models 1–4) under the optimal scenario.

According to Table 5, model 3, owing to the maximal
value of TLP, is seen as the most exact and best of the
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Table 2. Results of the general single-long short-term memory (LSTM) model
(model 1) and single-gated recurrent unit (GRU) model (model 2) in the calibration
stage.

Single-LSTMmodel (model 1) Single-GRU model (model 2)

Running time (s) Running time (s)

NHU P-rate tanh softsign NHU P-rate tanh softsign

75 0.3 110 114 15 0.3 47 51
75 0.5 103 108 15 0.5 45 48
75 0.7 95 98 15 0.7 43 45
85 0.3 115 121 20 0.3 51 55
85 0.5 109 114 20 0.5 49 53
85 0.7 102 108 20 0.7 48 50
100 0.3 145 151 25 0.3 57 61
100 0.5 139 146 25 0.5 55 58
100 0.7 130 135 25 0.7 53 55
110 0.3 211 219 30 0.3 77 79
110 0.5 204 212 30 0.5 71 74
110 0.7 197 206 30 0.7 66 61
125 0.3 231 236 50 0.3 95 99
125 0.5 223 228 50 0.5 90 94
125 0.7 215 221 50 0.7 82 88

Note: Characteristics of the optimal scenarios are highlighted in bold.
NHU = number of hidden units; P-rate = learning dropout rate.

Table 3. Results of the general single-long short-term memory (LSTM) model (model 1) and single-gated recurrent unit (GRU) model
(model 2) in the testing stage.

Single-LSTMmodel (model 1) Single-GRU model (model 2)

RMSE (m) R2 RMSE (m) R2

NHU P-rate tanh softsign tanh softsign NHU P-rate tanh softsign tanh softsign

75 0.3 0.32 0.35 0.39 0.37 15 0.3 0.35 0.39 0.36 0.33
75 0.5 0.31 0.33 0.43 0.40 15 0.5 0.34 0.37 0.39 0.37
75 0.7 0.33 0.35 0.34 0.33 15 0.7 0.36 0.38 0.31 0.29
85 0.3 0.28 0.32 0.51 0.47 20 0.3 0.31 0.35 0.46 0.43
85 0.5 0.25 0.28 0.56 0.52 20 0.5 0.28 0.31 0.51 0.48
85 0.7 0.27 0.31 0.53 0.48 20 0.7 0.30 0.33 0.49 0.44
100 0.3 0.23 0.24 0.72 0.70 25 0.3 0.28 0.32 0.62 0.58
100 0.5 0.21 0.23 0.76 0.74 25 0.5 0.26 0.29 0.65 0.62
100 0.7 0.22 0.25 0.74 0.68 25 0.7 0.29 0.31 0.6 0.59
110 0.3 0.25 0.30 0.57 0.53 30 0.3 0.25 0.27 0.71 0.69
110 0.5 0.23 0.27 0.59 0.57 30 0.5 0.22 0.24 0.75 0.73
110 0.7 0.26 0.29 0.53 0.50 30 0.7 0.24 0.26 0.72 0.70
125 0.3 0.35 0.38 0.41 0.39 50 0.3 0.38 0.41 0.38 0.36
125 0.5 0.31 0.35 0.37 0.41 50 0.5 0.34 0.38 0.43 0.40
125 0.7 0.34 0.37 0.40 0.37 50 0.7 0.37 0.4 0.40 0.39

Note: Characteristics of the optimal scenarios are highlighted in bold.
NHU = number of hidden units; P-rate = learning dropout rate; RMSE = root mean square error.

developed GRU-based models. However, based on the
values of RMSE and R2, it can be differentiated that for
the same hyperparameters the novel proposed model 4
works better than model 3. This incongruity and incom-
patibility can mainly be explained by the excessing the
TLP value in model 3 compared to models 4 and 2. In
other words, as a result of overcapacity, model 3 has
memorized the calibration dataset and has overfitted and,
consequently, has lost out in the optimization procedure.
All things considered,model 3 has poor performance and
cannot be considered as an appropriate model to fore-
cast the average monthly time-series GWL in the study
region.

From the TLP values in Table 5, it can be inferred
that for the same hyperparameters, adding a multipli-
cation layer yields a fit NTP accompanied by a suitable
TLP in comparison with model 3. Model 4 decreases
the value of RMSE by 25% and 18%, respectively, com-
pared with models 3 and 2. Overall, it cannot be uncon-
ditionally concluded that only by increasing the num-
ber of layers and NHU will the precision and ability
of GRU-based models definitively improve. In particu-
lar, as a significant outcome, to accomplish an effective
GRU-based model, a fitting structural NTP with suitable
TLP and an appropriate NHU should be designed and
operated.
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Table 4. Results of double-gated recurrent unit (GRU) models 3 and 4 (GRU2 and GRU2×) in the training and testing phases.

Training stage Testing stage

Running time (s) RMSE (m) R2

NHU P-rate SAF1–SAF2 Model 3 Model 4 Model 3 Model 4 Model 3 Model 4

15 0.3 softsign–tanh 85 79 0.38 0.35 0.44 0.50
15 0.5 softsign–tanh 79 74 0.36 0.31 0.52 0.59
15 0.7 softsign–tanh 74 69 0.37 0.33 0.48 0.55
20 0.3 softsign–tanh 92 85 0.33 0.29 0.54 0.60
20 0.5 softsign–tanh 85 80 0.30 0.27 0.59 0.66
20 0.7 softsign–tanh 78 71 0.31 0.28 0.50 0.62
25 0.3 softsign–tanh 118 93 0.29 0.21 0.62 0.76
25 0.5 softsign–tanh 102 87 0.24 0.18 0.68 0.86
25 0.7 softsign–tanh 91 81 0.28 0.22 0.65 0.74
30 0.3 softsign–tanh 144 98 0.35 0.26 0.48 0.68
30 0.5 softsign–tanh 131 91 0.32 0.23 0.55 0.75
30 0.7 softsign–tanh 109 84 0.34 0.25 0.50 0.72
50 0.3 softsign–tanh 178 134 0.44 0.39 0.31 0.45
50 0.5 softsign–tanh 161 128 0.38 0.35 0.41 0.51
50 0.7 softsign–tanh 148 120 0.42 0.38 0.37 0.49

Note: Characteristics of the optimal scenario are highlighted in bold.
NHU = number of hidden units; P-rate = learning dropout rate; SAF = state activation function; RMSE = root mean square error.

Table 5. Characteristics and statisticalmetrics in theoptimal scenario of thedevelopedmodels
in the validation stage.

Model NHU RMSE (m) R2 Running time (s) TLP

General single-LSTM (model 1) 100 0.21 0.76 139 40901
General single-GRU (model 2) 30 0.22 0.75 71 2911
GRU2 (model 3) 25 0.24 0.68 102 5876
GRU2× (model 4) 25 0.18 0.86 87 4076

Note: LSTM = long short-term memory; GRU = gated recurrent unit; NHU = number of hidden units;
RMSE = root mean square error; TLP = total learnable parameters.

Figure 6. Value of root mean square error (RMSE) versus number
of hidden units (NHU) in different applied K.

In connection with the number of iterations and run-
ning time for model training in the optimal scenarios,
model 2, because of the lowest TLP value, can learn sub-
optimal weight sets more quickly (2000 reiterations in
71 s). Nonetheless, model 3, for themaximumTLP value,
can learn further and even globally optimum weight
sets, and, consequently, it takes too long to train (2000
reiterations in 102 s).

6. Selection of the best model

In this research, to select the best model, taking into
account the effect of running time for the model train-
ing scale, the AICc and model grading process are
performed.

Because the applied models have different layers, their
tuned parameters are not similar. Accordingly, it is neces-
sary to equate the performance of the developed models
not only in terms of accuracy but also in terms of simplic-
ity. In this regard, the AICc is usually used to scrutinize
and compare the developed models by considering the
precision and intricacy of themodel concurrently (Zeyn-
oddin et al., 2019). The AICc index is defined as follows
(Ebtehaj et al., 2019):

AICc = (n ln(σ 2
ε )(n − k − 1)) + 2kn
n − k − 1

(14)

where n and k are the numbers of months and parame-
ters, respectively, and σε is the standard deviation of the
residuals.

The model grading procedure presented by Vahed-
doost et al. (2016) is used for a complementary statistical
judgment. In this method, the success grade (SG) and
failure grade (FG) of performance significant parameters
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Figure 7. Comparison of the predicted and measured groundwater level (GWL) by model 4 and the hybrid variational mode decompo-
sition–gated recurrent unit (VMD-GRU) model under optimal hyperparameters in the testing phase (66 months between October 2014
and March 2020).

are expressed as follows, along with the NSE:

NSE = 1 −

N∑
i=1

(xi − yi)2

N∑
i=1

(xi − μx)
2

(15)

SG(AICc) = AICci
AICcmin

× 10 (16)

SG(NSE) = NSEi
NSEmax

× 10 (17)

FG(Time) = Timei
Timemax

× 10 (18)

FG(RMSE) = RMSEi
RMSEmax

× 10 (19)

The total grade (TG) of each model is obtained by
adding the SG and FG of each model separately; the TG
ranges between −20 and +20, and is defined as

Total grade = SG(NSE) + SG(AICc)

− FG(Time) − FG(RMSE) (20)

The values of AICc and TG obtained by Equations
(14)–(20) are given in Table 6. Figure 7 shows a graph-
ical comparison of the observed and forecast time-series
GWL by model 4 and the hybrid VMD-GRU model in
the testing phase.

Examination of Figure 7 validates that the hybrid
VMD-GRUmodel can remember the previousmeasured
time-series GWL and capture the variational trend, espe-
cially in the bottom and peak points.

Table 6. Comparison of the optimal developed models in the
testing stage and related grades.

Model R2 AICc NSE Time RMSE TG

1 0.76 −208.32 0.86 139 0.21 −0.5
2 0.75 −197.78 0.85 71 0.22 2.31
3 0.68 −158.37 0.81 102 0.24 −1.89
4 0.86 −280.75 0.89 87 0.18 6.21
Hybrid VMD-GRU 0.92 −310.52 0.92 185 0.16 3.34

Note: VMD-GRU = variational mode decomposition–gated recurrent unit;
AICc = corrected Akaike’s information criterion; NSE = Nash–Sutcliffe effi-
ciency; RMSE = root mean square error; TG = total grade.

According to Table 6, where the hybrid VMD-GRU
model has the lowest AICc and RMSE, combined with
the highest R2 and NSE values, by discarding the effect
of running time criteria in the selection process of the
best method, this hybrid model may be considered the
most precise technique for predicting the mean monthly
time-series GWL. However, considering the effect of the
running time, because the highest TG value is found for
the GRU2× model (model 4), it is considered to be the
best method. All in all, based on Table 6 and Figure 7,
since the hybrid VMD-GRUmodel is slightly more accu-
rate than model 4, the authors prefer model 4 as the
optimum model for forecasting GWL. Despite the supe-
riority of model 4, it has some limitations, such as the
need for continuousmeasurement of different water table
depths and the high number of monitoring piezometers
required over a long period to forecast exactly the average
monthly GWL in the study region. Furthermore, as GWL
is not an unremitting stationary multifactor time series
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with a lagged response, forecasting the GWL for farming
purposes is often expected to be time-consuming.

7. Conclusions

In this study, the time-series GWL was predicted in
Qoşaçay plain, an arable region in Qoşaçay city, West
Azerbaijan Province, Northwest Iran. For this purpose,
216 monthly measured water table depths of 33 monitor-
ing piezometers in the long period between April 2002
and March 2020 were employed. For modeling, three
different-layer GRU-based neural networkmodels, along
with the hybrid VMD-GRU model, were developed. To
compare the performance of these models, the general
single-LSTM-layer network model was developed as the
basemodel. For better configuration and reduced overfit-
ting effects, algorithm tuning was performed using var-
ious types of activation function combinations, P-rate
and NHU as hyperparameters, along with a trial-and-
error procedure. The main conclusions of this study are
as follows:

(1) The general single-LSTM-layer network model
(model 1) was very slightly more precise than the
general GRU-layer network model (model 2), but,
as it required more NHU, it took too long to reach
convergence in comparison with model 2. Also, in
both models 1 and 2, tanh was selected as the most
suitable and fastest type of SAF.

(2) In the calibration phase, all developed models were
more precise than in the validation stage. As well, for
the same NHU, by increasing P-rate values, the run-
ning time for model training decreased. However,
for the same P-rate, by increasing the value of NHU,
the running time increased.

(3) After several experiments, the softsign–tanh com-
bination in SAF was determined to be an optimal
assemblage in both the GRU2 model (model 3) and
GRU2× model (model 4). In addition, model 4 was
noticeably faster than model 3.

(4) The hybrid VMD-GRU model under the optimal
hyperparameter values (P-rate = 0.5, NHU = 128,
K = 3) and tanh as the most suitable type of SAF
resulted in an R2 of 0.92 and an RMSE of 0.16m.
This hybrid model was a little more precise than the
GRU2×model, but it took too long to reach conver-
gence compared to all of the developed models.

(5) Despite the maximum value of TLP being obtained
by model 3, because of the highest value of TG in
the GRU2× model, the latter is preferred as the
best model. As an important consequence, it can
be deduced that to achieve an operative model, the

optimal NTP, NHU and TLP must be used in the
emulation process.

The newly proposed GRU-based structure (model 4)
is different from typical neural network models and has
not been previously utilized in the field of hydrology. It
can be viewed as an accurate DL-based structure and a
robust intelligent model since its performance was ver-
ified by statistical metrics. In contrast to other models,
it can significantly reduce the computational costs and is
therefore cheaper to run. Moreover, owing to the innova-
tive framework and construction of themodel (model 4),
which was developed in environments lacking records
onmeteorological parameters, it can be straightforwardly
used in various climatic regions around the world. Also,
for the same hyperparameters, its innovative and suit-
able layer network structure resulted in a suitable TLP
value among the designed GRU-based models. Although
the current study evaluated the ability of different struc-
tures of the GRU-based model and hybrid VMD-GRU
model in forecasting GWL, future investigations could
be performed using other types of models by hybridizing
DNN methods with optimization algorithms such as the
genetic algorithm or PSO. The relevant outcomes could
be equated with the results of this research so that the
best AI approaches can be determined. The authors also
strongly recommend predicting GWL in an environment
in which meteorological and hydrological data records
are available, to investigate the effect of these parame-
ters on the ability and precision of the designed models.
Finally, the authors advocate using the TLP factor as a
useful measure to judge the predictive ability, overfitting
conditions and performance of DL-based models, since
it can specify the functioning dimensions.
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