208 research outputs found

    Low-temperature statistical mechanics of the QuanTizer problem: fast quenching and equilibrium cooling of the three-dimensional Voronoi Liquid

    Full text link
    The Quantizer problem is a tessellation optimisation problem where point configurations are identified such that the Voronoi cells minimise the second moment of the volume distribution. While the ground state (optimal state) in 3D is almost certainly the body-centered cubic lattice, disordered and effectively hyperuniform states with energies very close to the ground state exist that result as stable states in an evolution through the geometric Lloyd's algorithm [Klatt et al. Nat. Commun., 10, 811 (2019)]. When considered as a statistical mechanics problem at finite temperature, the same system has been termed the 'Voronoi Liquid' by [Ruscher et al. EPL 112, 66003 (2015)]. Here we investigate the cooling behaviour of the Voronoi liquid with a particular view to the stability of the effectively hyperuniform disordered state. As a confirmation of the results by Ruscher et al., we observe, by both molecular dynamics and Monte Carlo simulations, that upon slow quasi-static equilibrium cooling, the Voronoi liquid crystallises from a disordered configuration into the body-centered cubic configuration. By contrast, upon sufficiently fast non-equilibrium cooling (and not just in the limit of a maximally fast quench) the Voronoi liquid adopts similar states as the effectively hyperuniform inherent structures identified by Klatt et al. and prevents the ordering transition into a BCC ordered structure. This result is in line with the geometric intuition that the geometric Lloyd's algorithm corresponds to a type of fast quench.Comment: 11 pages, 6 figure

    A mathematical model for top-shelf vertigo: the role of sedimenting otoconia in BPPV

    Get PDF
    Benign Paroxysmal Positional Vertigo (BPPV) is a mechanical disorder of the vestibular system in which calcite particles called otoconia interfere with the mechanical functioning of the fluid-filled semicircular canals normally used to sense rotation. Using hydrodynamic models, we examine the two mechanisms proposed by the medical community for BPPV: cupulolithiasis, in which otoconia attach directly to the cupula (a sensory membrane), and canalithiasis, in which otoconia settle through the canals and exert a fluid pressure across the cupula. We utilize known hydrodynamic calculations and make reasonable geometric and physical approximations to derive an expression for the transcupular pressure ΔPc\Delta P_c exerted by a settling solid particle in canalithiasis. By tracking settling otoconia in a two-dimensional model geometry, the cupular volume displacement and associated eye response (nystagmus) can be calculated quantitatively. Several important features emerge: 1) A pressure amplification occurs as otoconia enter a narrowing duct; 2) An average-sized otoconium requires approximately five seconds to settle through the wide ampulla, where ΔPc\Delta P_c is not amplified, which suggests a mechanism for the observed latency of BPPV; and 3) An average-sized otoconium beginning below the center of the cupula can cause a volumetric cupular displacement on the order of 30 pL, with nystagmus of order 22^\circ/s, which is approximately the threshold for sensation. Larger cupular volume displacement and nystagmus could result from larger and/or multiple otoconia.Comment: 15 pages, 5 Figures updated, to be published in J. Biomechanic

    Developing Accelerator Mass Spectrometry Capabilities for Anthropogenic Radionuclide Analysis to Extend the Set of Oceanographic Tracers

    Get PDF
    Recent major advances in Accelerator Mass Spectrometry (AMS) at the Vienna Environmental Research Accelerator (VERA) regarding detection efficiency and isobar suppression have opened possibilities for the analysis of additional long-lived radionuclides at ultra-low environmental concentrations. These radionuclides, including 233^{233}U, 135^{135}Cs, 99^{99}Tc, and 90^{90}Sr, will become important for oceanographic tracer application due to their generally conservative behavior in ocean water. In particular, the isotope ratios 233^{233}U/236^{236}U and 137^{137}Cs/135^{135}Cs have proven to be powerful fingerprints for emission source identification as they are not affected by elemental fractionation. Improved detection efficiencies allowed us to analyze all major long-lived actinides, i.e., 236^{236}U, 237^{237}Np, 239,240^{239,240}Pu, 241^{241}Am as well as the very rare 233^{233}U, in the same 10 L water samples of a depth profile from the northwest Pacific Ocean. For this purpose, a simplified and very flexible chemical purification procedure based on extraction chromatography (a single UTEVA® column) was implemented which can be extended by a DGA® column for Am purification. The procedure was validated with the reference materials IAEA-381/385. With the additional increase in ionization efficiency expected for the extraction of actinides as fluoride molecules from the AMS ion source, a further reduction of chemical processing may become possible. This method was successfully applied to an exemplary set of air filter samples. In order to determine the quantitative 237^{237}Np concentration reliably, a 236^{236}Np spike material is being developed in collaboration with the University of Tsukuba, Japan. Ion-Laser Interaction Mass Spectrometry (ILIAMS), a novel technique for the efficient suppression of stable isobaric background, has been developed at VERA and provides unprecedented detection sensitivity for the fission fragments 135^{135}Cs, 99^{99}Tc, and 90^{90}Sr. The corresponding setup is fully operational now and the isobar suppression factors of >105^{5} achieved, in principle, allow for the detection of the mentioned radionuclides in the environment. Especially for 90^{90}Sr analysis, this new approach has already been validated for selected reference materials (e.g., IAEA-A-12) and is ready for application in oceanographic studies. We estimate that a sample volume of only (1-3) L ocean water is sufficient for 90^{90}Sr as well as for 135^{135}Cs analysis, respectively

    The Chandra Source Catalog

    Get PDF
    The Chandra Source Catalog (CSC) is a general purpose virtual X-ray astrophysics facility that provides access to a carefully selected set of generally useful quantities for individual X-ray sources, and is designed to satisfy the needs of a broad-based group of scientists, including those who may be less familiar with astronomical data analysis in the X-ray regime. The first release of the CSC includes information about 94,676 distinct X-ray sources detected in a subset of public ACIS imaging observations from roughly the first eight years of the Chandra mission. This release of the catalog includes point and compact sources with observed spatial extents <~ 30''. The catalog (1) provides access to the best estimates of the X-ray source properties for detected sources, with good scientific fidelity, and directly supports scientific analysis using the individual source data; (2) facilitates analysis of a wide range of statistical properties for classes of X-ray sources; and (3) provides efficient access to calibrated observational data and ancillary data products for individual X-ray sources, so that users can perform detailed further analysis using existing tools. The catalog includes real X-ray sources detected with flux estimates that are at least 3 times their estimated 1 sigma uncertainties in at least one energy band, while maintaining the number of spurious sources at a level of <~ 1 false source per field for a 100 ks observation. For each detected source, the CSC provides commonly tabulated quantities, including source position, extent, multi-band fluxes, hardness ratios, and variability statistics, derived from the observations in which the source is detected. In addition to these traditional catalog elements, for each X-ray source the CSC includes an extensive set of file-based data products that can be manipulated interactively.Comment: To appear in The Astrophysical Journal Supplement Series, 53 pages, 27 figure

    Validity and reliability of drought reporters in estimating soil water content and drought impacts in central Europe

    Get PDF
    Increasing drought is considered one of the major threats associated with climate change in central Europe. To provide an objective, quantitative tool that represents current drought conditions, the Czech Drought Monitor System (CzechDM) was established in 2012. Like other drought monitoring systems worldwide, the CzechDM uses several approaches to provide drought data. However, the CzechDM is unique internationally due to its utilization of a network of voluntary reporters (farmers) who complete a weekly online questionnaire to provide information about soil water content and the impacts of drought on crop yield. In this study, the results from the questionnaires from individual farms were aggregated by district. Reporters’ data were compared and validated with the outputs of the SoilClim model (a core tool of the CzechDM) and with other drought monitoring tools, such as the water balance model, the soil water index and the evaporative stress index. The soil water content estimated by the reporters was significantly correlated (on average r = 0.8) with the outputs of the SoilClim model. Conversely, the correlation between the drought impacts on yield estimated by the reporters and the SoilClim outputs was lower (on average r = 0.4), suggesting that in situ observations by farmers provide additional insights into the occurrence of drought impacts. Importantly, it was found that farmers reported significant drought impacts on yield earlier in the season than any other methods (models or remote sensing). The main findings of this study are that the drought monitoring provided by reporters is a useful and reliable component of the CzechDM. We conclude that weekly reports by farmers represent a significant enhancement to drought monitoring and have potential for use in developing automated approaches that combine in situ, modeling and remote sensing data within a data fusion or machine learning framework

    The AMI System for the Transcription of Speech in Meetings

    Get PDF
    This paper describes the AMI transcription system for speech in meetings developed in collaboration by five research groups. The system includes generic techniques such as discriminative and speaker adaptive training, vocal tract length normalisation, heteroscedastic linear discriminant analysis, maximum likelihood linear regression, and phone posterior based features, as well as techniques specifically designed for meeting data. These include segmentation and cross-talk suppression, beam-forming, domain adaptation, web-data collection, and channel adaptive training. The system was improved by more than 20% relative in word error rate compared to our previous system and was used in the NIST RT’06 evaluations where it was found to yield competitive performance

    Statistical Characterization of the Chandra Source Catalog

    Full text link
    The first release of the Chandra Source Catalog (CSC) contains ~95,000 X-ray sources in a total area of ~0.75% of the entire sky, using data from ~3,900 separate ACIS observations of a multitude of different types of X-ray sources. In order to maximize the scientific benefit of such a large, heterogeneous data-set, careful characterization of the statistical properties of the catalog, i.e., completeness, sensitivity, false source rate, and accuracy of source properties, is required. Characterization efforts of other, large Chandra catalogs, such as the ChaMP Point Source Catalog (Kim et al. 2007) or the 2 Mega-second Deep Field Surveys (Alexander et al. 2003), while informative, cannot serve this purpose, since the CSC analysis procedures are significantly different and the range of allowable data is much less restrictive. We describe here the characterization process for the CSC. This process includes both a comparison of real CSC results with those of other, deeper Chandra catalogs of the same targets and extensive simulations of blank-sky and point source populations.Comment: To be published in the Astrophysical Journal Supplement Series (Fig. 52 replaced with a version which astro-ph can convert to PDF without issues.

    An extensive phenotypic characterization of the hTNFα transgenic mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor necrosis factor alpha (TNFα) is implicated in a wide variety of pathological and physiological processes, including chronic inflammatory conditions, coronary artery disease, diabetes, obesity, and cachexia. Transgenic mice expressing human TNFα (hTNFα) have previously been described as a model for progressive rheumatoid arthritis. In this report, we describe extensive characterization of an hTNFα transgenic mouse line.</p> <p>Results</p> <p>In addition to arthritis, these hTNFα transgenic mice demonstrated major alterations in body composition, metabolic rate, leptin levels, response to a high-fat diet, bone mineral density and content, impaired fertility and male sexual function. Many phenotypes displayed an earlier onset and a higher degree of severity in males, pointing towards a significant degree of sexual dimorphism in response to deregulated expression of TNFα.</p> <p>Conclusion</p> <p>These results highlight the potential usefulness of this transgenic model as a resource for studying the progressive effects of constitutively expressed low levels of circulating TNFα, a condition mimicking that observed in a number of human pathological conditions.</p

    Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Black elderberries (<it>Sambucus nigra </it>L.) are well known as supportive agents against common cold and influenza. It is further known that bacterial super-infection during an influenza virus (IV) infection can lead to severe pneumonia. We have analyzed a standardized elderberry extract (Rubini, BerryPharma AG) for its antimicrobial and antiviral activity using the microtitre broth micro-dilution assay against three Gram-positive bacteria and one Gram-negative bacteria responsible for infections of the upper respiratory tract, as well as cell culture experiments for two different strains of influenza virus.</p> <p>Methods</p> <p>The antimicrobial activity of the elderberry extract was determined by bacterial growth experiments in liquid cultures using the extract at concentrations of 5%, 10%, 15% and 20%. The inhibitory effects were determined by plating the bacteria on agar plates. In addition, the inhibitory potential of the extract on the propagation of human pathogenic H5N1-type influenza A virus isolated from a patient and an influenza B virus strain was investigated using MTT and focus assays.</p> <p>Results</p> <p>For the first time, it was shown that a standardized elderberry liquid extract possesses antimicrobial activity against both Gram-positive bacteria of <it>Streptococcus pyogenes </it>and group C and G <it>Streptococci</it>, and the Gram-negative bacterium <it>Branhamella catarrhalis </it>in liquid cultures. The liquid extract also displays an inhibitory effect on the propagation of human pathogenic influenza viruses.</p> <p>Conclusion</p> <p>Rubini elderberry liquid extract is active against human pathogenic bacteria as well as influenza viruses. The activities shown suggest that additional and alternative approaches to combat infections might be provided by this natural product.</p

    Clinical research in ovarian cancer: consensus recommendations from the Gynecologic Cancer InterGroup

    Get PDF
    The Gynecologic Cancer InterGroup (GCIG) sixth Ovarian Cancer Conference on Clinical Research was held virtually in October, 2021, following published consensus guidelines. The goal of the consensus meeting was to achieve harmonisation on the design elements of upcoming trials in ovarian cancer, to select important questions for future study, and to identify unmet needs. All 33 GCIG member groups participated in the development, refinement, and adoption of 20 statements within four topic groups on clinical research in ovarian cancer including first line treatment, recurrent disease, disease subgroups, and future trials. Unanimous consensus was obtained for 14 of 20 statements, with greater than 90% concordance in the remaining six statements. The high acceptance rate following active deliberation among the GCIG groups confirmed that a consensus process could be applied in a virtual setting. Together with detailed categorisation of unmet needs, these consensus statements will promote the harmonisation of international clinical research in ovarian cancer
    corecore