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Lenka Bartošová a,b,*, Milan Fischer a,b, Jan Balek a,b, Monika Bláhová a,b, Lucie Kudláčková a,b, 
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A B S T R A C T   

Increasing drought is considered one of the major threats associated with climate change in central Europe. To 
provide an objective, quantitative tool that represents current drought conditions, the Czech Drought Monitor 
System (CzechDM) was established in 2012. Like other drought monitoring systems worldwide, the CzechDM 
uses several approaches to provide drought data. However, the CzechDM is unique internationally due to its 
utilization of a network of voluntary reporters (farmers) who complete a weekly online questionnaire to provide 
information about soil water content and the impacts of drought on crop yield. In this study, the results from the 
questionnaires from individual farms were aggregated by district. Reporters’ data were compared and validated 
with the outputs of the SoilClim model (a core tool of the CzechDM) and with other drought monitoring tools, 
such as the water balance model, the soil water index and the evaporative stress index. The soil water content 
estimated by the reporters was significantly correlated (on average r = 0.8) with the outputs of the SoilClim 
model. Conversely, the correlation between the drought impacts on yield estimated by the reporters and the 
SoilClim outputs was lower (on average r = 0.4), suggesting that in situ observations by farmers provide addi-
tional insights into the occurrence of drought impacts. Importantly, it was found that farmers reported significant 
drought impacts on yield earlier in the season than any other methods (models or remote sensing). The main 
findings of this study are that the drought monitoring provided by reporters is a useful and reliable component of 
the CzechDM. We conclude that weekly reports by farmers represent a significant enhancement to drought 
monitoring and have potential for use in developing automated approaches that combine in situ, modeling and 
remote sensing data within a data fusion or machine learning framework.  

Abbreviations: ALEXI, atmosphere–land exchange inverse model; ASCAT, advanced scatterometer; AVISO, water balance model; AWP, drought intensity defined 
as a difference between predicted and real drought values (within this study for a soil depth 0–0.4 m); AWR0–0.4, relative soil saturation for a soil depth 0–0.4 m; 
AWR0–1.0, relative soil saturation for a soil depth 0–1.0 m; AzDW, arizona drought watch; CFSR, climate forecast system reanalysis; CzechDM, Czech drought 
monitor; DIR, drought impact reporter; EDO, European drought observatory; ESI, evaporative stress index; LST, land surface temperature; MODIS, moderate res-
olution imaging spectroradiometer; NDMC, national drought mitigation center; PDSI, palmer drought severity index; SPI, standardized precipitation index; SPEI, 
standardized precipitation-evapotranspiration index; SSM, surface soil moisture; SWCrep, soil water content observed by reporters within CzechDM; SWI, soil water 
index; VIC, variable infiltration capacity model. 
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1. Introduction 

Drought, as a manifestation of climate change, is a natural hazard 
and a worldwide problem (Wilhite et al., 2007; Hou et al., 2017). As has 
been observed many times, drought is notoriously difficult to define and 
to characterize properly as it is happening (Redmond, 2002; World 
Meteorological Organization, 2006) given its gradual onset, long dura-
tion, large spatial extent, and cross-boundary effects (Blauhut et al., 
2015). Although drought can be defined in various ways, it has multi-
disciplinary impacts, e.g., economic (Logar and van den Bergh, 2013; 
Ding et al., 2011), environmental (Crausbay et al., 2017) and social 
impacts (Wilhite and Vanyarkho, 2000), as well as direct and indirect 
impacts (Gil et al., 2013). All these impacts influence various sectors, 
including agriculture, energy production and public water (Blauhut 
et al., 2015; Stahl et al., 2016). The impacts of drought can be classified 
into a number of different categories (Stahl et al., 2012), but research 
and the public interest focus mainly on agricultural sector impacts 
(Blauhut et al., 2015) and on water management and water resources. 

The importance of drought monitoring is associated with a better 
understanding of drought occurrence, onset, extent and intensity, which 
could help to mitigate drought-related impacts, including economic 
losses (Wilhite, 1993), and to facilitate management or adaptation in the 
agricultural (Shrum et al., 2018), forestry (Bussotti and Pollastrini, 
2017) and water management (Fisher et al., 2017) sectors. 

Studies of existing drought monitoring systems that are available to 
the public have already been published, and they summarize current 
operational or proposed monitoring systems (e.g., Zink et al. 2016, 
Trnka et al. 2020). Most of the existing drought monitoring systems use 
indices such as the standardized precipitation index (SPI), standardized 
precipitation evapotranspiration index (SPEI), or (self-calibrated) 
Palmer drought severity index (PDSI) (used by both the US Drought 
Monitor and the European Drought Observatory (EDO). Other systems 
use soil moisture percentiles derived from hydrologic model simulations 
(US Drought Monitor), the hydrologic model LISFLOOD for soil moisture 
estimations (EDO) or the variable infiltration capacity (VIC) model 
(systems established in India and Africa) (Svoboda et al., 2002; Zink 
et al., 2016; Horion et al., 2012). 

There are also projects and monitoring systems that specialize in 
capturing drought impacts. In the USA, the impacts of droughts are 
recorded by the National Drought Mitigation center (NDMC), where the 
Drought Impact Reporter (DIR) is a tool for recording observations of 
drought impacts reported by various sources (Smith et al., 2014). The 
NDMC uses an online service that is open to the public and can be used to 
search for impacts in several categories (e.g., agriculture, water supply, 
wildfire, tourism). The DIR is both a historic archive of impacts and a 
gage of what kind of impacts are primarily of interest to contributors and 
news reporters (Smith et al., 2014). Impact data can help to improve the 
understanding of drought vulnerabilities and can therefore be used for 
developing and targeting mitigation strategies (Hayes et al., 2011; 
Wilhite et al., 2007). Information about drought impacts can also be 
used to support more precise relief allocation decisions and inform 
policy and planning priorities. In the agricultural sector, for example, 
drought impact reports are provided to USA Drought Monitor staff by 
the Farm Service Agency field personnel and by county extension agents, 
which are both seen as credible and professional sources of information 
(Lackstrom et al., 2013). In the US, additional local drought monitoring 
systems also exist. For example, the Arizona Drought Watch (AzDW) is 
designed to collect qualitative information about drought impacts in six 
categories: water, agriculture, livestock, society, tourism, and ecology. 
AzDW includes an online drought impact reporting system and was 
created mainly as a reaction to the demand for high-quality, local-level 
drought impact data to make decisions about drought declarations, 
status, and relief funds (Meadow et al., 2013). 

Within Europe, extensive datasets of drought impacts have been 
collected (Stahl et al., 2016), including close to 5000 impact reports 
from 33 European countries developed using journal articles, books, 

newspaper articles, various reports and other sources. These datasets 
can fill information gaps about drought impacts and provide a useful 
data source for studies connecting the hydrological characteristics of 
droughts. However, Stahl et al. (2016) also highlighted the need to 
monitor variables in addition to precipitation (e.g., soil moisture, for 
improved impact-specific drought indicators). In the central and 
southeastern European states, drought impacts have been monitored 
and collected within the DriDanube project. The target states collected 
data from publicly available sources (newspapers and journals) in five 
categories (agriculture, forestry, soil systems, wildfires and hydrology) 
during the 1981–2016 period (Jakubinsky et al., 2019). Another sig-
nificant monitoring effort in Europe is the MARS (Monitoring Agricul-
tural Resources) bulletin, which provides widespread monitoring 
services and information; each bulletin includes a set of maps (areas of 
concern) depicting extreme weather events (including droughts or rain 
deficits) that have occurred in Europe during the analysis period and 
their impacts on crops (Seguini et al., 2019). 

In the Czech Republic, the Czech Drought Monitor (CzechDM) sur-
veys not only drought duration and occurrence information (using 
modeling approaches, remote sensing data and ground data from 
meteorological stations) but also drought impacts on yield. Reporters 
(farmers) subjectively observe soil moisture and especially drought 
impacts on the yields of given crops weekly and provide information 
from numerous localities in real time throughout the whole year (Trnka 
et al., 2020). These observations are unique in Europe and provide new 
and deeper insights into drought evaluation and management. 

The main goals of this study are to (1) process the data from reporters 
who monitored drought (soil water content) and drought impacts on 
weekly yields during the 2015–2018 period; (2) evaluate the reporters’ 
estimated soil water content data through comparisons with models and 
indices used for drought monitoring; and (3) evaluate the reporters’ 
estimated drought impacts on crop yield using models and other pa-
rameters of drought observations. For goal (1), we hypothesize that the 
data from reporters (the soil water content and drought impacts on 
yield) are usable and that the information about drought impacts on 
yield in particular will provide new insights and information about 
drought occurrence (i.e., we expect low correlations between the 
observed impacts by reporters and the outputs of models and indices). 
Consequently, for goal (2), we hypothesize that the soil water content 
and drought impacts on yield observed by reporters will be variably 
correlated with the outputs of the SoilClim model (and other models and 
methods of drought monitoring) over given periods (years). Finally, for 
goal (3), we expect that a lower number of reporters in each district will 
result in lower correlations with the modeled values. 

2. Materials and methods 

We used weekly estimated soil water content (SWCrep) and estimated 
drought impacts on yield data from reporters from various sites in the 
Czech Republic (16 districts and 57 sites on average) from 2015 to 2018. 
The SWCrep and reported impacts were evaluated and compared with 
the SoilClim model, the AVISO model, the soil water index (SWI) and the 
evaporative stress index (ESI). 

2.1. Reporters 

The CzechDM reporters are farmers who were nominated by the 
Agriculture Chamber of the Czech Republic to monitor drought occur-
rence and drought impacts. The main task of these reporters was to make 
weekly observations of drought conditions and to share the information 
through an online questionnaire (accessible to the general public in the 
Czech language at www.intersucho.cz/dotaznik, attached as Supple-
ment 1). Their participation was based on voluntary cooperation, which 
implies that the number of reporters varied from week to week and over 
the years. The questionnaire consisted of 15 questions, and completing 
the questionnaire took ca. 15 min. The first three questions were related 
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to soil moisture conditions (the current situation, the last three months, 
and the change since the last report) were followed by questions 
focusing on the specific observed impacts on key crops. More details 
about the reporters’ tasks have been described previously (Trnka et al., 
2020). 

The reporters within this study evaluated drought and soil water 
conditions at the cadaster(s) level, and the results were subsequently 
averaged over the area of a district. In each district, the drought situa-
tion was reported by 1 or more reporters (10 at most) independent of 
each other (the average number of reporters in one district was four). 
For the current study, we used data from 16 districts from which the 
reporters sent reports from 2015 to 2018 and continuously if possible. 
The selected districts represent mainly areas that experience a long-term 
negative water balance during the year. A large fraction of the obser-
vational sites were in regions where the soils were experiencing a 
negative water-balance regime, with 100 sites at deficits of up to 
− 100 mm and three districts representing areas with even more severe 
negative water balances (of − 100 up to − 300 mm); Fig. 1. 

To evaluate the reporters’ data on soil moisture, we used the answers 
to the first question from the questionnaire: ‘What is the state of soil 
moisture in the layer 20 cm from the surface?’ The responses were 
averaged (if there was more than one reporter in a district) and 
compared with outputs of the SoilClim and AVISO models and with SWI 
and ESI data at weekly time steps for the 2015–2018 period. The re-
sponses were provided on a five-point scale where a value of 1"′′ in-
dicates that the soil is dry and dusty to the touch, and a value of “"5 
indicates that the soil is close to being fully saturated with water. 

To evaluate the estimates of drought impacts on yields, we used the 
answers to seven questions, e.g., ‘Estimate the drought impacts on the 

yield of winter cereals’. The drought impacts on winter cereals and 
winter rape were averaged, and those on spring cereals in the first half of 
the vegetation period (March, April, May, and June) were also averaged 
for each week. The drought impacts on sugar beet, potato and maize 
yields were averaged over July, August, September, and October in 
given week. The drought impacts on permanent grasslands were aver-
aged in given weeks over the entire vegetation period. These averages 
were done because the observed impacts were almost similar for winter 
and spring cereals and in summer part of the year for late (summer) 
crop. The questionnaire responses were provided on a 6-point scale, 
where 1 indicates no effect of drought and thriving vegetation; 2 in-
dicates no effect of drought but worse vegetation conditions for other 
reasons; and 3, 4, 5 and 6 indicate various yield losses (<10%, 10–30%, 
30–40% and >40%, respectively). Before the harvest, the reporters 
estimated their expected yield loss, which means that the questionnaire 
relied on their professional estimates based on vegetation conditions (e. 
g., the amount and strength of offshoots). The yield loss reported after 
the harvest was the current value calculated by the reporters according 
to the average yields from the last three years. These estimated impact 
data were compared and evaluated with the outputs of the SoilClim and 
AVISO models and with the SWI and ESI values. 

2.2. SoilClim 

The SoilClim model (Hlavinka et al., 2011) was designed as an 
advanced tool for the identification of soil climate regimes at a daily 
time step. The model simulates the soil water content in two defined 
layers as a result of the balance between the inflow (e.g., infiltration) 
and outflow (e.g., evapotranspiration, percolation, runoff) components 

Fig. 1. The Czech Republic. The indicated districts (black outlines) include all observational plots at the cadaster level (white dots) used in this study. Changes in the 
landscape water regimes were calculated for one year, and data from 1981 to 2010 were used. The district abbreviations are: BN = Benešov, BI = Brno venkov, 
BV = Břeclav, HO = Hodonín, JC = Jičín, LT = Litoměřice, LN = Louny, MB = Mladá Boleslav, NB = Nymburk, PI = Písek, PS = Plzeň sever, PR = Přerov, 
PB = Příbram, RA = Rakovník, UH = Uherské Hradǐstě, ZN = Znojmo. 
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of the water balance. SoilClim works at a daily time step and requires the 
maximum and minimum air temperature, global solar radiation, pre-
cipitation, vapor pressure and wind speed as meteorological inputs, as 
well as basic information about the soil properties (soil type map after 
Tomášek 2007) and dynamically simulated vegetation cover (and 
related crop coefficients), and multiple vegetation cover types (e.g., 
spring and winter field crops or permanent grasslands) (Řehoř et al., 
2021; Hlavinka et al., 2011). The SoilClim model also considers runoff, 
deep percolation, simplified macropore water flows with a modified 
cascade principle (Allen et al., 1998). 

Two SoilClim indicators were used to evaluate the reporters’ data in 
this study: i) the relative available water content at soil depths of 
0–0.4 m (AWR0–0.4) and 0–1.0 m (AWR0–1.0); the AWR describes the 
current relative soil saturation over 500 m grids, where 0% represents 
the wilting point and 100% represents field capacity. And ii) the drought 
intensity in the 0–0.4 m topsoil (AWP); the AWP value represents a 
probabilistic interpretation of the actual AWR value in relation to all 
AWR values occurring in the given grid between 1961 and 2010 during 
the same period of the year. The final output of the AWP describes the 
current probability of the frequency of a given soil water content on a 
specific day and is classified into a seven-stage scale of drought intensity 
(from <S0 – no drought risk to S5 – extreme drought) (Trnka et al., 
2020). 

2.3. AVISO 

The AVISO model is an agrometeorological information system used 
at the Czech Hydrometeorological Institute. The basic output of the 
model is the soil water content (in 0–1.0 m) in percent of available water 
capacity. The actual deficit is computed as a sum of difference between 
precipitation and evapotranspiration of current day and soil water 
deficit at the end of the last day. The soil water content in percent of 
available water capacity is then calculated by means of actual soil water 
deficit value between two main hydrolimits - field moisture capacity and 
wilting point. The input data for this model are the air temperature, 
vapor pressure, sunshine duration, wind speed, and precipitation, as 
well as the values of soil texture characteristics (available water ca-
pacity, field capacity and wilting point). The modeled surface was set to 
a reference grass (Allen et al., 1998), and one soil type was applied – 
medium-heavy soils (Kohut et al., 2009). The main difference between 
the SoilClim and AVISO models is a significant generalization of vege-
tation cover and soil conditions within the AVISO calculations (the 
model uses only one vegetation cover type and one soil type). The AVISO 
model is then dependent mainly on meteorological parameters (pri-
marily precipitation and temperature). The calculation of outputs is run 
each year (from the 1st January) with very low default values of soil 
water deficit. Subsequently, the outputs for winter and early spring are 
not sufficiently representative and within this study used data from the 
start of April till the end of the year. Although the cumulative indices of 
soil moisture are useful for characterizing the drought severity in critical 
development stages (Piniewski et al., 2020), both models (SoilClim and 
AVISO) used in this study indicate current soil water status each week. 
The outputs of this model (the soil water content in percent of available 
water capacity) used in this study are for a soil depth of 0–1.0 m and are 
indicated as AVISO within the text. 

2.4. Soil water index-SWI 

The soil water index (SWI), originally developed at Technical Uni-
versity Wien (Wagner et al., 1999) and later developed by other research 
groups (Bauer-Marschallinger et al., 2018), uses an infiltration model 
that describes the relationship between the surface and soil profile soil 
moisture as a function of time. The algorithm is based on a two-layer 
water balance model that estimates the profile soil moisture from sur-
face soil moisture data retrieved from the radar backscattering co-
efficients measured by the ASCAT (Advanced Scatterometer) instrument 

onboard the MetOp (Meteorological Operational) satellites. In this 
model, the water content of the reservoir layer is described in terms of an 
index that is controlled only by the past soil moisture conditions in the 
surface layer such that the influence of the measurements decreases with 
time. The SWI is derived from surface soil moisture (SSM) values based 
on a temporal filtering method. An important parameter used to model 
infiltration into deeper soil layers to calculate the SWI is the charac-
teristic time length, called the T-value; the higher the T-value is, the 
smoother the SWI and the deeper the represented layer (Bauer-Mar-
schallinger et al., 2018). In this study, 15-day T-values were used to 
represent 0–0.4 m soil depth and are indicated as SWI. 

2.5. Evaporative stress index-ESI 

The evaporative stress index (ESI) represents the standardized 
anomalies (z-scores) of the actual to reference evapotranspiration ratio 
(fRET = ETa/ETo), where ETa is determined from the land-surface 
temperature (LST)-driven atmosphere–land exchange inverse (ALEXI) 
model. ALEXI is a diagnostic modeling system that exploits the morning 
LST rise signal to derive the components of the surface energy balance 
with a two-source energy balance scheme (Norman et al. 1995; Ander-
son et al. 1997; 2007). The version of the model used in this study is 
based on the approximation of the LST morning rise by the MOD11A1 
day/night retrieval dataset from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) onboard the Terra satellite ((Hain and 
Anderson, 2017). Additional inputs describing the meteorological con-
ditions necessary to solve the surface energy balance and to compute the 
FAO-56 ETo (Allen et al., 1998) were obtained from the Climate Forecast 
System Reanalysis (CFSR). The ESI product used in this study is available 
at a weekly temporal resolution in the form of two composites with 
0.05◦ (~5000 m) spatial resolution: a 4-week composite, which has the 
ability to capture shorter-term drought events, and a 12-week compos-
ite, which has the potential to indicate agricultural as well as hydro-
logical droughts. The 12-week values are used in this study and are 
indicated as ESI in the text. The values of ESI were download for this 
study from external online database serviglobal.net. 

2.6. Statistical analyses and validation 

Correlation coefficients (r) and p-values (p) were used as the basic 
indicators of correlations, statistical significance, and deviation among 
all parameters. The coherency between given data series was evaluated 
at the 95% and 99% confidence levels according to Schönwiese (1985). 
The coherence analysis is used to evaluate dependencies in given peri-
odic elements (Brázdil, 1986). In this study, the periodic elements of 
given weeks were considered (specifically from 2, 4, 8, 16, 32, and 64 
weeks cycles up to trend components) and help us better see the co-
herency among series mainly in trend components. The SWCrep and 
reported impacts were evaluated using data from the SoilClim model 
(AWR0–0.4, AWR0–1.0 and AWP); data from the AVISO model; and values 
of SWI and ESI at weekly time steps. Analyses were performed with the 
statistical/programming tool R 3.6.1. (R: A Language and Environment 
for Statistical Computing 2022R: A Language and Environment for 
Statistical Computing, 2022) and with AnClim software for time series 
analysis (Štěpánek P., 2008). 

3. Results 

The number of active reporters increased from 22 reporters on 
average for the Czech Republic in 2014 to 197 reporters in 2018 (Fig. 2) 
(Table 1). In line with this increase, the number of active districts 
increased from 17 in 2014 to 62 in 2018. The total number of districts in 
the Czech Republic is 76, and the area of one district is equal to one LAU 
(local administrative unit) in the European Union system. The number of 
registered reporters (including active and nonactive reporters) also grew 
to more than 500 in 2018 (Table 1). The numbers of active reporters and 
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active districts changed over the years and increased mainly in the 
spring and summer months. 

Data from 2014 were not included in this study because the number 
of reporters was too low, there were many data gaps, and reporting 
ended after the crop vegetative period ended (in October 2014). In this 
study, we show the numbers of reporters in order to provide a better 
overall perspective on the growth of CzechDM activity since cooperation 
with reporters began. Since February 2015, observations by reporters 
have been collected regularly throughout the entire year, thus providing 
a consistent, robust and continuous database. 

Fig. 2. Number of active reporters (dark gray), active districts (gray) and registered reporters (light gray) from 2015 – 2018 in the Czech Republic.  

Table. 1 
Development of the average numbers of active and registered reporters and 
districts throughout the Czech Republic from 2014–2018.   

2014 2015 2016 2017 2018 

Active reporters 22 45 105 109 197 
Number of districts with active 

reporters 
17 22 48 49 62 

Registered reporters 40 118 268 339 512  

Fig. 3. Total number of all received from reporters monitoring soil water content and drought impacts on field crops from 2014 to 2018.  
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Each reporter observed one or more localities, so the number of 
collected reports is different from the number of reporters; it ranged 
from 50 to 400 on average for the entire country in 2014 – 2018 (Fig. 3). 
The districts with the highest number of reporters and of reports with 
continuous and long-term observations are in the areas of southern 
Moravia and central Bohemia. These districts were used for validation in 
this study, and the number of reporters in each district moved from two 
to eight reporters (Table 2). 

3.1. Reported soil water content (SWCrep) 

The SWCrep was evaluated by comparison with AWR0–0.4, AWR0–1.0, 
AWP, AVISO, SWI and ESI data (Table 2). The validation tests showed 
high and statistically significant correlations between SWCrep and 
AWR0–0.4 (rd = 0.8, rd – correlation coefficient for all districts), AWR0–1.0 
(rd = 0.7) and SWI (rd = 0.7). The correlations of the mentioned pa-
rameters were statistically significant at α=0.001 for all studied dis-
tricts. Lower, yet still significant, correlation coefficients were obtained 
from the validation with AWP and AVISO (rd = 0.5 same for both var-
iables). The lowest correlation was detected with ESI (rd = 0.3), but the 
correlations for most districts were still significant at α=0.001. 

The temporal changes in SWCrep and the other drought indices are 
displayed for the Rakovník district, where the number of reporters was 
the most consistent and the dataset was the most robust throughout the 
entire study (Fig. 4). The average number of reporters in each week was 
6. The strongest correlation (r = 0.86, p = 0.000) in this district was 
obtained between SWCrep and AWR0–0.4. The weakest correlation 
(r = 0.3, p = 0.027) was obtained between SWCrep and ESI. 

The coherence analysis between SWCrep and AWR0–0.4, AWR0–1.0 and 
SWI showed high and stable coherency (in all districts) for long-term 
periods. For these characteristics, the coherency also exceeded the 
95% and 99% confidence levels in long-terms periods for all studied 
districts. The coherency analysis revealed notably high variability be-
tween SWCrep and AWP and ESI within the districts. For some districts, 
the coefficients exceeded the 95% and 99% confidence levels for long- 
term periods, while in other districts, there was almost no coherency 
or the coherence coefficients were low. No coherency or very low co-
herency coefficient values were obtained from the analysis between 
SWCrep and AVISO in all districts (Fig. B). The coherence coefficients 
showed similar trends as the correlation coefficients for the same paired 
datasets (SWCrep with AWR0–0.4, AWR0–1.0 and SWI), especially over 

long-term periods and trend components (specifically for periods of 4 
months or longer). 

3.2. Impacts assessed by reporters 

The reported impacts were validated through comparisons with 
AWR0–0.4, AWR0–1.0, AWP, AVISO, SWI and ESI data (Table 3). The 
validation results showed the highest correlation between the reported 
impacts and the ESI values (rd = 0.73). The correlation coefficients were 
constant in all districts, and all were significant at α=0.001. High and 
significant correlation coefficients were also detected between the re-
ported impacts and the AVISO outputs, for which the correlations were 
0.71 on average across all districts. All tested relationships were statis-
tically significant, with r values ranging from 0.43 to 0.89 among dis-
tricts. Another parameter used for elaboration of the reported impacts 
was AWR0–1.0. The relationship between the reported impacts and 
AWR0–1.0 had high but variable correlation coefficients (rd = 0.6); they 
ranged from 0.3 (not significant) to 0.72 (significance at α=0.001). The 
parameters AWR0–0.4, AWP and SWI showed little agreement with the 
reported impacts, with correlation coefficients of 0.4, 0.22 and 0.36, 
respectively. The lowest statistically significant correlation was found 
between the reported impacts and AWP in 7 of the 16 districts. 

The results from the representative district of Rakovník are presented 
(Fig. 5). The comparisons resulted in the highest correlations for the ESI, 
AVISO and SoilClim data (AWR0–1.0 m) (rd = 0.73, 0.7 and 0.62, 
respectively). These correlations were statistically significant at 
α=0.001, and the same level of significance was also calculated for the 
parameters AWR0–0.4 and SWI (with lower correlation coefficients). A 
significant but weak correlation (α= 0.05 and r = 0.26) was detected for 
one of the SoilClim parameters, AWP. 

The coherence analysis between the reported impacts and the out-
puts of the SoilClim model (all three parameters, AWR0–0.4, AWR0–1.0 
and AWP) and SWI showed various values of coherence coefficients at 
short time scales and at long time scales. In some districts, the coherency 
exceeded the 95% and 99% confidence levels in 16-week periods. For 
other districts, the coherency was low or showed a decreasing long-term 
trend. High coherency was detected between the reported impacts and 
the ESI and AVISO. The coherency was high in 8-week and longer pe-
riods as well as between the trends of both parameters, and the results 
exceeded the 95% and 99% confidence levels (Fig. C). The results 
showed stable and high coherency in trends between the same datasets 

Table. 2 
Correlations between the soil water content as estimated by reporters and the outputs of the SoilClim model (AWR0–0.4, AWR0–1.0, AWP), evaporative stress index (ESI), 
soil water index (SWI) and AVISO model in 2015–2018, and the average number of reporters in each district.    

Reported soil water content vs.      
AWR_0–40 AWR_0–100 AWP ESI SWI AVISO 

District No. of reporters/ 
average 

r r r r r r 

Benešov 2 0.77*** 0.72*** 0.53*** 0.30*** 0.72*** 0.59*** 
Brno venkov 3 0.71*** 0.64*** 0.33*** 0.15 0.67*** 0.32*** 
Břeclav 2 0.81*** 0.62*** 0.45*** 0.01 0.66*** 0.40*** 
Hodonín 3 0.66*** 0.58*** 0.24* 0.06 0.63*** 0.31*** 
Jičín 3 0.81*** 0.74*** 0.61*** 0.63*** 0.81*** 0.72*** 
Litoměřice 2 0.84*** 0.70*** 0.59*** 0.33*** 0.72*** 0.63*** 
Louny 5 0.77*** 0.59*** 0.65*** 0.27*** 0.64*** 0.48*** 
Mladá Boleslav 3 0.82*** 0.78*** 0.68*** 0.46*** 0.75*** 0.65*** 
Nymburk 2 0.78*** 0.70*** 0.52*** 0.38*** 0.74*** 0.58*** 
Písek 4 0.78*** 0.68*** 0.58*** 0.15** 0.53*** 0.41*** 
Plzeň sever 3 0.87*** 0.71*** 0.65*** 0.44*** 0.69*** 0.61*** 
Přerov 2 0.81*** 0.60*** 0.36*** 0.30*** 0.68*** 0.55*** 
Příbram 6 0.76*** 0.63*** 0.56*** 0.32*** 0.51*** 0.57*** 
Rakovník 6 0.86*** 0.66*** 0.71*** 0.30*** 0.71*** 0.60*** 
Uherské Hradǐstě 3 0.86*** 0.67*** 0.55*** 0.24** 0.72*** 0.56*** 
Znojmo 8 0.84*** 0.69*** 0.57*** 0.21** 0.70*** 0.51***  

* Significant at α= 0.05. 
** significant at α=0.01. 
*** significant at α=0.001%. 
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Fig. 4. Time series of soil water content as estimated by reporters (SWCrep) and simulations by the SoilClim model, relative soil saturation at a soil depth of 0 – 0.4 m 
(AWR0–0.4), relative soil saturation at a soil depth of 0 – 1.0 m (AWR0–1.0), and drought intensity at a soil depth of 0 – 0.4 m (AWP); soil water index (SWI) at a soil 
depth of 0 – 0.4 m; evaporative stress index (ESI); and AVISO outputs at a soil depth of 0 – 1.0 m in 2015–2018 in the representative district of Rakovnik. 
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(the reported impacts and the ESI and AVISO), just as the correlation 
coefficients showed. Stable trends were detected for long-term series 
and trend components (4 months and longer). 

To better understand the links among the parameters used in this 
study, we also calculated the correlations among all indicators (Table 4). 
The correlation analyses revealed the strongest correlation between 
indicators from the two models (SoilClim and AVISO), i.e., the relative 
soil saturation at a soil depth of 0 – 1.0 m and the current deficit of soil 
water in mm at a soil depth of 0 – 1.0 m (rd = 0.88). The outputs of the 
SoilClim model, especially AWR0–0.4 (the relative soil saturation in the 
topsoil layer), showed strong correlations with the SWI (rd = 0.74). The 
next strongest correlation was detected between the ESI and the AVISO 
model (rd = 0.69). On the other hand, the correlation between the SWI 
and the ESI was weak. Only in two cases was the correlation between the 

model or index and the data from reporters stronger than the correlation 
between the remaining parameters (models and indices). The output of 
the SoilClim model, AWR0–0.4, showed the strongest correlation with 
SWCrep (average r = 0.8), and the ESI showed the next strongest cor-
relation with the reported impacts (average r = 0.73). In all other cases, 
the correlations were stronger between pairs of models or indices. This 
means that reporter data provide new information about drought 
development; in particular, data about drought impacts on yield from 
reporters showed weak correlations with the SoilClim model data. 

3.3. Number of reporters 

In the studied districts, the average number of reporters ranged from 
2-3 reporters (districts with a low number of reporters) to 4–8 reporters 

Fig. B. 1 Coherence analysis of soil water content observed by reporters (SWCrep) with outputs of model SoilClim: relative soil saturation in topsoil layer and root 
zone layer: AWR0–0.4 (A), AWR0–1.0 (B) and drought intensity in top soil layer AWP (C). Coherence among SWCrep with other parameters are displayed as following: D 
- Soil Water Index (SWI), E – Evaporative Stress Index - ESI, F – outputs of model AVISO. Black equal lines indicate 95% and 99% confidence levels. Different types of 
lines in each graph indicate data from all 16 districts used within this study. 
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(districts with an average or high number of reporters) (Table 2). The 
correlations between SWCrep and all studied indicators were 0.59, on 
average, in districts with 2-3 reporters. In districts with 4–8 reporters, 
the average correlation was 0.57 (between SWCrep and all model and 
index outputs). Similar results were obtained for the relationships be-
tween the reported impacts and all studied parameters. The average 
correlation coefficients were 0.49 for districts with 2-3 reporters and 
0.53 for districts with 4–8 reporters. The correlation between SWCrep 
and the output of the SoilClim model, AWR0–0.4 (which was the highest 
detected correlation), changed gradually over time during 20-week pe-
riods. The correlation strengths declined, especially during the winter 
and spring months; the number of reporters in all districts was also lower 
during these periods (Fig. 6). 

4. Discussion 

The main goal of this study was to verify whether data about drought 
conditions collected by voluntary reporters could be considered objec-
tive and reliable information about drought occurrence that has the 
potential to be an integral part of drought monitoring. The principal 
finding of this study was that the data collected by reporters (specifically 
the estimated soil water content - SWCrep and the estimated drought 
impacts on yield) were closely related to other independent and 
commonly used drought indicators. The SWCrep values were highly 
correlated with outputs of the SoilClim model and the SWI. The reported 
impacts showed a lower correlation with the SoilClim model outputs but 
had significant correlations with the values of soil moisture estimated 
the AVISO model and the ESI. 

Monitoring drought using various indices is currently common, and 
various methods and online tools for the public have previously been 
described and published (e.g., Zink et al. 2016, Trnka et al. 2020). The 
observation of drought impacts by voluntary reporters is still excep-
tionally unique at the international scale, and only a few systems around 
the world involve cooperation with reporters/volunteers. We assumed 
that there are two challenges involved in cooperating with reporters 
who work on a voluntary basis: i) keeping them active and ii) deter-
mining whether their work and observed data are reliable. 

With regard to the first challenge, reporters (volunteers) often have 
differing motivations and interests, diverse technical capacities, and 
differing needs for regular communication and outreach; these factors 
hinder the sustained impact of reporting efforts (Lackstrom et al., 2013). 

One of the main motivations for the Czech reporters considered in this 
study was the long-term drought occurring at their locations. The effort 
required to initiate action and solve problems for the reporting system 
was high, mainly in the first years of the observations (2014 and 2015) 
and in southern Moravia and the central Czech Republic, where drought 
is clearly a long-term problem (Brazdil et al., 2007; Trnka et al., 2009). A 
noticeable increase in the number of reporters occurred after the sig-
nificant and intensive drought in 2015 (Van Lanen et al., 2016; Trnka 
et al., 2020) which had negative impacts mainly in the agriculture sector 
(Bartosova et al., 2016). The average number of active reporters in the 
first half of 2015 was 36; in the second half of 2015, the number of active 
reporters increased to 53, and in 2016, the average number was 105. 
These trends confirm the experience of the Arizona Drought Watch 
(AzDW), where the intended users of AzDW were reluctant to report 
observations when they did not perceive drought impacts in their region 
(Meadow et al., 2013). 

In developing a reliable and robust group of reporters, we greatly 
appreciate the support of the Agriculture Chamber of the Czech Republic 
(a nongovernmental organization), which provided us with contacts and 
organized a number of meetings and lectures with farmers and potential 
reporters. This cooperation with the chamber was a crucial point at the 
onset of the collaboration with the reporters. The number of reports 
from a given district depends, in the end, on the personal activity of each 
reporter; nevertheless, we did our best to remain in contact with the 
reporters (mainly through email correspondence and regular commu-
nication to keep them active). Building a system that is supported by 
experts substantially increases the probability that other drought impact 
observers will follow the lead of these experts and start to make routine 
contributions (Meadow et al., 2013). We expected that a higher number 
of reporters in a given district would also result in higher-quality in-
formation. However, the final correlations between the SWCrep or re-
ported impacts and the outputs of the SoilClim model and other 
indicators did not show any obvious dependence on the number of re-
porters. According to the correlations in the districts with a low number 
of reporters (2-3 reporters in each district; the average area of these 
districts is 1093 km2) and in the districts with an average or high 
number of reporters (4–8 reporters in each district; the average area of 
these districts is 1259 km2), it was not clear that a higher number of 
reporters resulted in higher correlations or that a low number of re-
porters resulted in specific and local information that was usable only for 
that cadastral area. The correlations between the SWCrep and the 

Table 3 
Correlations between the estimated impacts on yield from reporters and the outputs of the SoilClim model (AWR0–0.4, AWR0–1.0, AWP), evaporative stress index (ESI), 
soil water index (SWI) and AVISO model in 2015–2018, with the average number of reporters in each district.    

Reported impacts vs.       
AWR_0–40 AWR_0–100 AWP ESI SWI AVISO 

District No. of reporters/ 
average 

r r r r R r 

Benešov 2 − 0.49*** − 0.69*** − 0.17 − 0.66*** − 0.44*** − 0.82*** 
Brno venkov 3 − 0.29** − 0.62*** − 0.09 − 0.66*** − 0.29** − 0.71*** 
Břeclav 2 − 0.21* − 0.5*** − 0.13 − 0.65*** − 0.15 − 0.58*** 
Hodonín 3 − 0.19* − 0.33*** − 0.12 − 0.76*** − 0.25** − 0.43*** 
Jičín 3 − 0.42*** − 0.61*** − 0.37*** − 0.72*** − 0.19* − 0.64*** 
Litoměřice 2 − 0.43*** − 0.71*** − 0.19 − 0.70*** − 0.44*** − 0.74*** 
Louny 5 − 0.30*** − 0.61*** − 0.21* − 0.73*** − 0.40*** − 0.66*** 
Mladá Boleslav 3 − 0.68*** − 0.72*** − 0.55*** − 0.69*** − 0.65*** − 0.87*** 
Nymburk 2 − 0.54*** − 0.71*** − 0.39*** − 0.77*** − 0.41*** − 0.84*** 
Písek 4 − 0.52*** − 0.68*** − 0.25** − 0.76*** − 0.44*** − 0.89*** 
Plzeň sever 3 − 0.49*** − 0.64*** − 0.27** − 0.79*** − 0.56*** − 0.76*** 
Přerov 2 − 0.26** − 0.61*** − 0.04 − 0.68*** − 0.05 − 0.63*** 
Příbram 6 − 0.44*** − 0.52*** − 0.16 − 0.82*** − 0.33*** − 0.84*** 
Rakovník 6 − 0.51*** − 0.62*** − 0.26* − 0.73*** − 0.46*** − 0.70*** 
Uherské Hradǐstě 3 − 0.23* − 0.38*** − 0.05 − 0.70*** − 0.27** − 0.52*** 
Znojmo 8 − 0.34*** − 0.65*** − 0.2 − 0.78*** − 0.38*** − 0.66***  

* Significant at α= 0.05. 
** significant at α=0.01. 
*** significant at α=0.001. 
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SoilClim output (AWR0–0.4) over 20-week periods varied with time in all 
studied districts (Fig. 6). The correlation strength declined specifically 
during winter and springtime, as did the number of reporters; the 
number of reporters increased during the entire observed period 

(2015–2018) but experienced localized declines in the winter. The lower 
correlations during winter may be due not only to the lower number of 
reporters but also to the difficulty in assessing the soil water content and 
to greater errors in the satellite data and model simulations during the 

Fig. 5. Time series of reported drought impacts and simulations of the SoilClim model, relative soil saturation at a soil depth of 0.0–0.4 m (AWR0–0.4), relative soil 
saturation at a soil depth of 0.0–1.0 m (AWR0–1.0), and drought intensity at a soil depth of 0.0–0.4 m (AWP); soil water index (SWI) at a soil depth of 0 – 0.4 m; 
evaporative stress index (ESI); and AVISO model at a soil depth of 0 – 1.0 m in 2015–2018 in the representative district of Rakovnik. 
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winter months. 
Currently, the CzechDM reporters provide data for three sectors: 

agriculture, fruit orchards and viticulture, and forestry. This study 
evaluated only data from reporters in the agriculture sector because 
these data are complete and do not have gaps. While the value of the 
impact data collected for agriculture has been clearly demonstrated 
(Lackstrom et al., 2013), there are also some attendant challenges and 
conflicts of interest that can complicate the interpretation of these data. 
For example, in the case of the USDM, there may be either direct or 
indirect financial benefits to those who may be impacted by drought in 
the form of mitigation funding, insurance payouts, or changes in reve-
nue streams. On the other hand, other drought stakeholders might have 
political or economic disincentives for contributing critical information; 
there could also be reporters who are reluctant to report improving 

conditions because improvements could bring an end to federal aid 
(Lackstrom et al., 2013). Similar questions are faced by the CzechDM, 
and one of the motivations of this study was to evaluate the data from 
the reporters with independent methods, tools and models. 

The SWCrep data collected from the reporters showed the strongest 
correlation with the outputs of the SoilClim model; for AWR0–0.4, the 
average correlation for all studied districts was 0.8, and for AWR0–1.0 the 
average correlation for same group of districts was 0.7. While these 
values indicate that the reporter information was generally valid, they 
also mean that the information from reporters about soil water condi-
tions did not provide new information to the CzechDM, as was hy-
pothesized. However, the soil water content data collected by reporters 
are still one of the most useful data sources for independent validations 
of the SoilClim model. 

Fig. C. 1 Coherence analysis of drought impacts on yield observed by reporters with outputs of model SoilClim: relative soil saturation in topsoil layer and root zone 
layer: AWR0–0.4 (A), AWR0–1.0 (B) and drought intensity in top soil layer AWP (C). Coherence among reported imapcts with other parameters are displayed as 
following: D - Soil Water Index (SWI), E – Evaporative Stress Index - ESI, F – outputs of model AVISO. Black equal lines indicate 95% and 99% confidence levels. 
Different types of lines in each graph indicate data from all 16 districts used within this study. 
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The reported impacts showed weaker correlations with the outputs 
of the SoilClim model than SWCrep (the correlation values for the three 
SoilClim parameters were low). This confirmed our hypothesis that the 
drought impacts observed by reporters would provide new insights and 
new information. A good example of the importance of reported impacts 
occurred during 2018, when all the indicators of drought showed 
favorable conditions during spring (specifically in March, April and 
May). For example, AWR0–0.4 and AWR0–1.0 (the relative soil saturation 
in the topsoil and root zone layer) reached saturation values of 50 – 80% 
and 60 – 80%, respectively, which means that the soil moisture still 
provided a good or sufficient water supply for plants. Reporters, how-
ever, identified the cumulative impacts of drought beginning in early 
March, and predicted yield declines of up to 10%. The reported impacts 
either did not change or worsened, and the expected yield decline during 
April was 10–30%. Finally, the situation became serious in May, when 
most of the reporters observed moderate and sporadically severe 
drought impacts, and the expected yield decline increased to 30–40%. 
During that time, the SoilClim model (and other tools) also showed 
deterioration, but these signs were one or two months late compared to 
the reported impacts. During that spring, the information provided by 
reporters was sufficient to allow for subsequent planning and manage-
ment interventions for farmers and revealed a better view of the whole 
drought process during the 2018 growing season, especially in the early 
spring. An explanation why this happened right in 2018 could be the fact 
that drought in 2017 was intensive; the winter of 2017/2018 was warm, 
with little precipitation; the river levels were low after the winter; and 
there was a significant soil moisture deficit starting in February 2018. 
Although the relative soil saturation (the AWR in the topsoil and root 
zone layer) was calculated by the SoilClim model to be sufficient, the soil 
was not sufficiently saturated with water, and the landscape was not 
ready for a new upcoming vegetation period; evidently, the reporters 
were aware of these conditions. Cumulative drought indices should 
describe the drought impacts observed by reporters more precisely. The 
following study will analyze the drought impacts on specific crops in 
given localities (at cadastre unit). The planned study will also use the 
cumulative indices (calculated by the SoilClim model) for better un-
derstanding the reporteŕs impacts. 

The reported impacts were strongly correlated with the ESI, which 
has been found to be a leading indicator of developing and persistent 
water and/or vegetation stress during times of drought in other studies 
(Anderson et al., 2016a, 2016b). Based on actual ET components, 
including transpiration, ESI inherently captures signals of vegetation 
health and functioning. The results also showed the difference (low 
correlation) among ESI and SWI values, which is not surprising, because 
both indices describe drought from different perspectives. Generally, the 
SWI is derived from surface soil moisture and describes the soil moisture 
in specific soil depths, at the same time ESI describes the anomaly of the 
ratio between actual and reference evapotranspiration. As such, SWI 
points to the soil moisture at a given depth, while ESI results from the 
soil moisture across the entire root zone. The reported impacts were also 
strongly correlated with the AVISO model output, which describes the 
soil water content (in 0–1.0 m) in percent of available water capacity. Of 
the SoilClim model outputs, AWR0–1.0 was most strongly correlated with 
the reported impacts. This result is expected since the moisture condi-
tions in the root-zone layer (0–1.0 m) are more strongly correlated with 
vegetation conditions and observed drought impacts than those in the 
topsoil layer (0–0.4 m). The correlations between both models and im-
pacts observed by reporters showed slightly different values of correla-
tion coefficients, which was expected. Despite the short period (4 years) 
of analysis, the difference in correlation is not so significant and the 
success of each model is approximate. All results also showed there is no 
one best method for determining the drought, so the approach is based 
on the convergence of evidence of specific techniques. Combining 
various data sources has potential and integrating particular approaches 
for improved drought impact forecasting can evolve various pathways 
and at various stages in the drought information system. The methods to Ta
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do so can roughly be categorized into machine learning approaches and 
model-data integration techniques, which allows us to establish the most 
suitable drought impacts diagnostic or identify the key drivers of agri-
cultural drought and their impacts on yield (Crocetti et al., 2020). 

5. Conclusions 

Drought monitoring practices that do not include drought impacts 
are not comprehensive. Systematic and quantitative information about 
the environmental and socioeconomic impacts of drought is often 
missing from drought planning and management (Stahl et al., 2016), 
and historical drought impacts have led to crucial progress in developing 
measures to reduce vulnerability to drought hazards (Knutson et al., 
1998; Wilhite et al., 2000, 2007). Most empirical studies of drought 
impacts have focused on agricultural crop production, which is direct, 
immediately observable, well understood, and easy to quantify (Wilhite 
et al., 2000). The CzechDM is also aimed mainly at agricultural impacts; 
nevertheless, regular agricultural monitoring provides many benefits for 
drought management planning and negotiations with state agencies 
during ongoing drought events as well as for understanding the histor-
ical development of drought impacts. Our results showed that obser-
vations of drought impacts on plants and of the soil water content 
provided by reporters are valuable and necessary for drought moni-
toring. The drought impact data provided by voluntary reporters were 
validated, and they were the most strongly correlated with parameters 
describing the soil water content in the root zone layer (0 – 1.0 m). On 
the other hand, the soil water content as observed by reporters was most 
strongly correlated with soil water indicators for the topsoil layer (0 – 
0.4 m). The validation results revealed a weaker correlation between the 
reported impacts and the SoilClim model (but high correlations with the 
independent indices and models) and strong correlations between the 
SWCrep and the SoilClim model and other independent indicators of 
drought. These results confirmed that the data and observations from 
reporters are robust and objective and should be part of the Czech 
Drought Monitor system. We believe that drought impact observations 
from voluntary reporters provide new insights into drought develop-
ment and, in certain years, could detect the start of a drought earlier or 
more accurately than other tools for drought monitoring. 
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Appendices 

A: Online questionnaire for reporters, accessible on website of 
CzechDM in Czech language in period 2014 - 2018. Since 2019 the 
drought impacts questions changed (first four questions remain the 
same), questionnaire became more detailed and included questions on 
individual crop. Questionnaire is online for reporters every week since 
Monday to Thursday (https://www.intersucho.cz/cz/dotaznik/). 

1. What is the state of soil moisture in the layer 20 cm from the 
surface?  

○ soil is dry and dusty by touch, without possibility to make any form  
○ soil is drier by touch, it has loose structure; without moisture impact  
○ soil is moderately moist, it’s possible to make a form but low 

consistence, it gives the feeling of moisture in fingers  
○ soil is moist with good workability and possibility to make a finger- 

print  
○ soil is fully saturated by water it sticks to fingers – it’s muddy  
○ cannot be evaluated 

2. How do you evaluate last 3 months according to water balance? 

○ extremely dry – precipitation deficit/intensive drought with signifi-
cant impacts  

○ very dry – precipitation deficit with detectable negative drought 
impacts  

○ process is rather drier without visible impacts  
○ normal state  
○ process is rather moister, without negative manifestations  
○ very moist – with detectable negative impacts  
○ extremely moist – precipitation surplus with negative impacts 

3. How do you evaluate last week in comparison with previous week 
according to water balance?  

○ dramatic decline – with negative impacts for crops  
○ significant decline – with potentially negative impacts for crops  
○ decline – without negative impacts on crops 

Fig. 6. Running correlation between the SWCrep and the SoilClim model output, the relative soil saturation at a soil depth of 0 – 0.4 m (AWR0–0.4) over 20-week 
periods in all studied districts. The black line indicates the average value of the running correlation; the gray lines indicate the standard deviations of the 
running correlations; and the dashed line indicates the average number of reporters in all studied districts. 
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○ without change  
○ improvement – without crucial moisture recharge in the soil profile  
○ significant improvements – with crucial moisture recharge of the soil 

profile  
○ dramatic improvements – with significant recharge of soil moisture 

storage 

4. Does our drought intensity estimation from this map (link to 
regional map of given district) correspond with reality in your area of 
interest?  

○ it exactly describes the current situation  
○ it corresponds with the current situation pretty well  
○ it basically corresponds with the current situation  
○ it rather does not correspond with observed state  
○ it does not correspond, it’s useless 

5. Estimate drought impacts on winter cereals for the yield of 2017  

○ no effect of drought; vegetation is optimal  
○ no effect of drought but vegetation is worse for other reasons  
○ drought effected development of vegetation but considerable losses 

are not expected, yield loss will be to 10% *  
○ middle level of damage, considerable decrease of yield is expected, 

yield loss will be to 10–30% *  
○ hard damage of vegetation, yield on 10-year minimum, yield loss will 

be to 30–40% *  
○ vegetation extremely damaged by drought, yield loss bigger than 

40% *  
○ cannot be evaluated 

* in comparison with the average of last 3 years; before harvest, it’s 
the qualified estimation based on vegetation condition (e.g. amount and 
strength of offshoots). After harvest, answers reflected the observed 
yield decreased by the effect of drought. (Note: same explanation is 
repeating in all remaining questions and within this supplement will not be 
repeated anymore). 

6. Estimate drought impacts on winter rape for the yield of 2017  

○ no effect of drought; vegetation is optimal  
○ no effect of drought but vegetation is worse for other reasons  
○ drought effected development of vegetation but considerable losses 

are not expected, yield loss will be to 10%  
○ middle level of damage, considerable decrease of yield is expected, 

yield loss will be to 10–30%  
○ hard damage of vegetation, yield on 10-year minimum, yield loss will 

be to 30–40%  
○ vegetation extremely damaged by drought, yield loss bigger than 

40%  
○ cannot be evaluated 

7. Estimate drought impacts on spring cereals for the yield of 2017  

○ no effect of drought; vegetation is optimal  
○ no effect of drought but vegetation is worse for other reasons  
○ drought effected development of vegetation but considerable losses 

are not expected, yield loss will be to 10%  
○ middle level of damage, considerable decrease of yield is expected, 

yield loss will be to 10–30%  
○ hard damage of vegetation, yield on 10-year minimum, yield loss will 

be to 30–40%  
○ vegetation extremely damaged by drought, yield loss bigger than 

40%  
○ cannot be evaluated 

8. Estimate drought impacts on sugar beet for the yield of 2017  

○ no effect of drought; vegetation is optimal  
○ no effect of drought but vegetation is worse for other reasons  
○ drought effected development of vegetation but considerable losses 

are not expected, yield loss will be to 10%  
○ middle level of damage, considerable decrease of yield is expected, 

yield loss will be to 10–30%  
○ hard damage of vegetation, yield on 10-year minimum, yield loss will 

be to 30–40%  
○ vegetation extremely damaged by drought, yield loss bigger than 

40%  
○ cannot be evaluated 

9. Estimate drought impacts on potatoes for the yield of 2017  

○ no effect of drought; vegetation is optimal  
○ no effect of drought but vegetation is worse for other reasons  
○ drought effected development of vegetation but considerable losses 

are not expected, yield loss will be to 10%  
○ middle level of damage, considerable decrease of yield is expected, 

yield loss will be to 10–30%  
○ hard damage of vegetation, yield on 10-year minimum, yield loss will 

be to 30–40%  
○ vegetation extremely damaged by drought, yield loss bigger than 

40%  
○ cannot be evaluated 

10. Estimate drought impacts on maize for the yield 2017  

○ no effect of drought; vegetation is optimal  
○ no effect of drought but vegetation is worse for other reasons  
○ drought effected development of vegetation but considerable losses 

are not expected, yield loss will be to 10%  
○ middle level of damage, considerable decrease of yield is expected, 

yield loss will be to 10–30%  
○ hard damage of vegetation, yield on 10-year minimum, yield loss will 

be to 30–40%  
○ vegetation extremely damaged by drought, yield loss bigger than 

40%  
○ cannot be evaluated 

11. Estimate drought impacts on permanent grasslands for the yield 
2017  

○ no effect of drought; vegetation is optimal  
○ no effect of drought but vegetation is worse for other reasons  
○ drought effected development of vegetation but considerable losses 

are not expected, yield loss will be to 10%  
○ middle level of damage, considerable decrease of yield is expected, 

yield loss will be to 10–30%  
○ hard damage of vegetation, yield on 10-year minimum, yield loss will 

be to 30–40%  
○ vegetation extremely damaged by drought, yield loss bigger than 

40%  
○ cannot be evaluated 

B: Results of coherence analysis of soil water content observed by 
reporters (SWCrep) with other drought parameters (models and indices). 

C: Results of coherence analysis of drought impacts on yield observed 
by reporters with other drought parameters (models and indices). 
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