230 research outputs found

    Implication of mitochondria-derived ROS and cardiolipin peroxidation in N-(4-hydroxyphenyl)retinamide-induced apoptosis

    Get PDF
    We have studied the effect of N-(4-hydroxyphenyl)retinamide on either malignant human leukaemia cells or normal cells and investigated its mechanism of action. We demonstrate that 4HPR induces reactive oxygen species increase on mitochondria at a target between mitochondrial respiratory chain complex I and II. Such oxidative stress causes cardiolipin peroxidation which in turn allows cytochrome c release to cytosol, caspase-3 activation and therefore apoptotic consumption. Moreover, this apoptotic pathway seems to be bcl-2/bax independent and count only on malignant cells but not normal nor activated lymphocytes

    Role of Mitochondrial Electron Transport Chain Complexes in Capsaicin Mediated Oxidative Stress Leading to Apoptosis in Pancreatic Cancer Cells

    Get PDF
    We evaluated the mechanism of capsaicin-mediated ROS generation in pancreatic cancer cells. The generation of ROS was about 4–6 fold more as compared to control and as early as 1 h after capsaicin treatment in BxPC-3 and AsPC-1 cells but not in normal HPDE-6 cells. The generation of ROS was inhibited by catalase and EUK-134. To delineate the mechanism of ROS generation, enzymatic activities of mitochondrial complex-I and complex-III were determined in the pure mitochondria. Our results shows that capsaicin inhibits about 2.5–9% and 5–20% of complex-I activity and 8–75% of complex-III activity in BxPC-3 and AsPC-1 cells respectively, which was attenuable by SOD, catalase and EUK-134. On the other hand, capsaicin treatment failed to inhibit complex-I or complex-III activities in normal HPDE-6 cells. The ATP levels were drastically suppressed by capsaicin treatment in both BxPC-3 and AsPC-1 cells and attenuated by catalase or EUK-134. Oxidation of mitochondria-specific cardiolipin was substantially higher in capsaicin treated cells. BxPC-3 derived ρ0 cells, which lack mitochondrial DNA, were completely resistant to capsaicin mediated ROS generation and apoptosis. Our results reveal that the release of cytochrome c and cleavage of both caspase-9 and caspase-3 due to disruption of mitochondrial membrane potential were significantly blocked by catalase and EUK-134 in BxPC-3 cells. Our results further demonstrate that capsaicin treatment not only inhibit the enzymatic activity and expression of SOD, catalase and glutathione peroxidase but also reduce glutathione level. Over-expression of catalase by transient transfection protected the cells from capsaicin-mediated ROS generation and apoptosis. Furthermore, tumors from mice orally fed with 2.5 mg/kg capsaicin show decreased SOD activity and an increase in GSSG/GSH levels as compared to controls. Taken together, our results suggest the involvement of mitochondrial complex-I and III in capsaicin-mediated ROS generation and decrease in antioxidant levels resulting in severe mitochondrial damage leading to apoptosis in pancreatic cancer cells

    4-oxo-N-(4-hydroxyphenyl)retinamide: Two Independent Ways to Kill Cancer Cells

    Get PDF
    BACKGROUND: The retinoid 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR) is a polar metabolite of fenretinide (4-HPR) very effective in killing cancer cells of different histotypes, able to inhibit 4-HPR-resistant cell growth and to act synergistically in combination with the parent drug. Unlike 4-HPR and other retinoids, 4-oxo-4-HPR inhibits tubulin polymerization, leading to multipolar spindle formation and mitotic arrest. Here we investigated whether 4-oxo-4-HPR, like 4-HPR, triggered cell death also via reactive oxygen species (ROS) generation and whether its antimicrotubule activity was related to a ROS-dependent mechanism in ovarian (A2780), breast (T47D), cervical (HeLa) and neuroblastoma (SK-N-BE) cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS: We provided evidence that 4-oxo-4-HPR, besides acting as an antimicrotubule agent, induced apoptosis through a signaling cascade starting from ROS generation and involving endoplasmic reticulum (ER) stress response, Jun N-terminal Kinase (JNK) activation, and upregulation of the proapoptotic PLAcental Bone morphogenetic protein (PLAB). Through time-course analysis and inhibition of the ROS-related signaling pathway (upstream by vitamin C and downstream by PLAB silencing), we demonstrated that the antimitotic activity of 4-oxo-4-HPR was independent from the oxidative stress induced by the retinoid. In fact, ROS generation occurred earlier than mitotic arrest (within 30 minutes and 2 hours, respectively) and abrogation of the ROS-related signaling pathway did not prevent the 4-oxo-4-HPR-induced mitotic arrest. CONCLUSIONS/SIGNIFICANCE: These data indicate that 4-oxo-4-HPR anticancer activity is due to at least two independent mechanisms and provide an explanation of the ability of 4-oxo-4-HPR to be more potent than the parent drug and to be effective also in 4-HPR-resistant cell lines. In addition, the double mechanism of action could allow 4-oxo-4-HPR to efficiently target tumour and to eventually counteract the development of drug resistance

    Deguelin Attenuates Reperfusion Injury and Improves Outcome after Orthotopic Lung Transplantation in the Rat

    Get PDF
    The main goal of adequate organ preservation is to avoid further cellular metabolism during the phase of ischemia. However, modern preservation solutions do rarely achieve this target. In donor organs hypoxia and ischemia induce a broad spectrum of pathologic molecular mechanisms favoring primary graft dysfunction (PGD) after transplantation. Increased hypoxia-induced transcriptional activity leads to increased vascular permeability which in turn is the soil of a reperfusion edema and the enhancement of a pro-inflammatory response in the graft after reperfusion. We hypothesize that inhibition of the respiration chain in mitochondria and thus inhibition of the hypoxia induced mechanisms might reduce reperfusion edema and consecutively improve survival in vivo. In this study we demonstrate that the rotenoid Deguelin reduces the expression of hypoxia induced target genes, and especially VEGF-A, dose-dependently in hypoxic human lung derived cells. Furthermore, Deguelin significantly suppresses the mRNA expression of the HIF target genes VEGF-A, the pro-inflammatory CXCR4 and ICAM-1 in ischemic lungs vs. control lungs. After lung transplantation, the VEGF-A induced reperfusion-edema is significantly lower in Deguelin-treated animals than in controls. Deguelin-treated rats exhibit a significantly increased survival-rate after transplantation. Additionally, a downregulation of the pro-inflammatory molecules ICAM-1 and CXCR4 and an increase in the recruitment of immunomodulatory monocytes (CD163+ and CD68+) to the transplanted organ involving the IL4 pathway was observed. Therefore, we conclude that ischemic periods preceding reperfusion are mainly responsible for the increased vascular permeability via upregulation of VEGF. Together with this, the resulting endothelial dysfunction also enhances inflammation and consequently lung dysfunction. Deguelin significantly decreases a VEGF-A induced reperfusion edema, induces the recruitment of immunomodulatory monocytes and thus improves organ function and survival after lung transplantation by interfering with hypoxia induced signaling

    Clinicopathological significance of mitochondrial D-Loop mutations in head and neck carcinoma

    Get PDF
    Mitochondrial DNA mutations have been reported in several types of tumours, including head and neck squamous cell carcinoma (HNSCC). The noncoding region of the Displacement-Loop (D-Loop) has emerged as a mutational hotspot and we recently found that they were associated with prognosis and response to 5 fluorouracil (5FU) in colon cancers. In order to evaluate the frequence of D-Loop mutations in a large series of HNSCC and establish correlations with clinicopathologic parameters, we sequenced the D-Loop of 109 HNSCC before a treatment by neoadjuvant 5FU-cisplatin-based chemotherapy and surgery. Then, we correlated these mutations with prognosis and response to chemotherapy. A D-Loop mutation was identified in 21% of the tumors, the majority of them were located in a C-tract (D310). The prevalence of D310 mutations increased significantly with the number of cytosines in the matched normal tissue sequence (P=0.02). Hypopharyngeal cancer was significantly more frequent (P=0.03) and tobacco consumption more important (P=0.01) in the group of patients with D-Loop mutation. The presence of D-Loop mutation was not associated with prognosis or with response to neoadjuvant chemotherapy. These results suggest that D-Loop mutations should be considered as a cancer biomarker that may be useful for the early detection of HNSCC in individuals at risk of this cancer

    Diabetes mellitus and obesity among South Asians with ischemic stroke across three countries

    Get PDF
    Background: Diabetes mellitus and central obesity are more common among South Asian populations than among White British people. This study explores the differences in diabetes and obesity in South Asians with stroke living in the United Kingdom, India, and Qatar compared with White British stroke patients. Methods: The study included the UK, Indian, and Qatari arms of the ongoing large Bio-Repository of DNA in Stroke (BRAINS) international prospective hospital-based study for South Asian stroke. BRAINS includes 4580 South Asian and White British recruits from UK, Indian, and Qatar sites with first-ever ischemic stroke. Results: The study population comprises 1751 White British (WB) UK residents, 1165 British South Asians (BSA), 1096 South Asians in India (ISA), and 568 South Asians in Qatar (QSA). ISA, BSA, and QSA South Asians suffered from higher prevalence of diabetes compared with WB by 14.5% (ISA: 95% confidence interval (CI) = 18.6–33.0, p < 0.001), 31.7% (BSA: 95% CI = 35.1–50.2, p < 0.001), and 32.7% (QSA: 95% CI = 28.1–37.3, p < 0.001), respectively. Although WB had the highest prevalence of body mass index (BMI) above 27 kg/m2 compared with South Asian patients (37% vs 21%, p < 0.001), South Asian patients had a higher waist circumference than WB (94.8 cm vs 90.8 cm, p < 0.001). Adjusting for traditional stroke risk factors, ISA, BSA, and QSA continued to display an increased risk of diabetes compared with WB by 3.28 (95% CI: 2.53–4.25, p < 0.001), 3.61 (95% CI: 2.90–4.51, p < 0.001), and 5.24 (95% CI: 3.93–7.00, p < 0.001), respectively. Conclusion: South Asian ischemic stroke patients living in Britain and Qatar have a near 3.5-fold risk of diabetes compared with White British stroke patients. Their body composition may partly help explain that increased risk. These findings have important implications for public health policymakers in nations with large South Asian populations

    Pyrosequencing the Bemisia tabaci Transcriptome Reveals a Highly Diverse Bacterial Community and a Robust System for Insecticide Resistance

    Get PDF
    BACKGROUND: Bemisia tabaci (Gennadius) is a phloem-feeding insect poised to become one of the major insect pests in open field and greenhouse production systems throughout the world. The high level of resistance to insecticides is a main factor that hinders continued use of insecticides for suppression of B. tabaci. Despite its prevalence, little is known about B. tabaci at the genome level. To fill this gap, an invasive B. tabaci B biotype was subjected to pyrosequencing-based transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes. METHODOLOGY AND PRINCIPAL FINDINGS: Using Roche 454 pyrosequencing, 857,205 reads containing approximately 340 megabases were obtained from the B. tabaci transcriptome. De novo assembly generated 178,669 unigenes including 30,980 from insects, 17,881 from bacteria, and 129,808 from the nohit. A total of 50,835 (28.45%) unigenes showed similarity to the non-redundant database in GenBank with a cut-off E-value of 10-5. Among them, 40,611 unigenes were assigned to one or more GO terms and 6,917 unigenes were assigned to 288 known pathways. De novo metatranscriptome analysis revealed highly diverse bacterial symbionts in B. tabaci, and demonstrated the host-symbiont cooperation in amino acid production. In-depth transcriptome analysis indentified putative molecular markers, and genes potentially involved in insecticide resistance and nutrient digestion. The utility of this transcriptome was validated by a thiamethoxam resistance study, in which annotated cytochrome P450 genes were significantly overexpressed in the resistant B. tabaci in comparison to its susceptible counterparts. CONCLUSIONS: This transcriptome/metatranscriptome analysis sheds light on the molecular understanding of symbiosis and insecticide resistance in an agriculturally important phloem-feeding insect pest, and lays the foundation for future functional genomics research of the B. tabaci complex. Moreover, current pyrosequencing effort greatly enriched the existing whitefly EST database, and makes RNAseq a viable option for future genomic analysis

    Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells

    Get PDF
    Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA damage response, for example, is modulated by the acetylation status of histone and non-histone proteins, and by the opposing activities of histone acetyltransferase and histone deacetylase (HDAC) enzymes. Many HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic insults. Thus, HDAC inhibitors, in addition to unsilencing tumor suppressor genes, also can silence DNA repair pathways, inactivate non-histone proteins that are required for DNA stability, and induce reactive oxygen species and DNA double-strand breaks. This review summarizes how dietary phytochemicals that affect the epigenome also can trigger DNA damage and repair mechanisms. Where such data is available, examples are cited from studies in vitro and in vivo of polyphenols, organosulfur/organoselenium compounds, indoles, sesquiterpene lactones, and miscellaneous agents such as anacardic acid. Finally, by virtue of their genetic and epigenetic mechanisms, cancer chemopreventive agents are being redefined as chemo- or radio-sensitizers. A sustained DNA damage response coupled with insufficient repair may be a pivotal mechanism for apoptosis induction in cancer cells exposed to dietary phytochemicals. Future research, including appropriate clinical investigation, should clarify these emerging concepts in the context of both genetic and epigenetic mechanisms dysregulated in cancer, and the pros and cons of specific dietary intervention strategies

    A relação entre o nível voluntário de transparência e o custo de capital próprio das empresas brasileiras não-financeiras

    Get PDF
    O objetivo principal desta pesquisa é verificar empiricamente a existência de relação significativa entre o nível de disclosure voluntário de informações e custo de capital próprio de empresas brasileiras não financeiras. É esperado que um maior nível de disclosure esteja relacionado a um menor custo de capital próprio pela redução do risco percebido pelos investidores. A fim de medir o nível de disclosure voluntário das empresas foi utilizado um questionário desenvolvido para este fim. O custo de capital próprio foi obtido com base em informações publicamente disponíveis das empresas. Foi encontrada uma relação negativa e significante entre as variáveis de interesse, indicando que as empresas que mais divulgam informações voluntariamente conseguem captar capital próprio a uma taxa mais barata
    corecore