182 research outputs found

    Research on Preference Polyhedron Model Based Evolutionary Multiobjective Optimization Method for Multilink Transmission Mechanism Conceptual Design

    Get PDF
    To make the optimal design of the multilink transmission mechanism applied in mechanical press, the intelligent optimization techniques are explored in this paper. A preference polyhedron model and new domination relationships evaluation methodology are proposed for the purpose of reaching balance among kinematic performance, dynamic performance, and other performances of the multilink transmission mechanism during the conceptual design phase. Based on the traditional evaluation index of single target of multicriteria design optimization, the robust metrics of the mechanism system and preference metrics of decision-maker are taken into consideration in this preference polyhedron model and reflected by geometrical characteristic of the model. At last, two optimized multilink transmission mechanisms are designed based on the proposed preference polyhedron model with different evolutionary algorithms, and the result verifies the validity of the proposed optimization method

    Modulation of Type III Secretion System in Pseudomonas aeruginosa: Involvement of the PA4857 Gene Product

    Get PDF
    Pseudomonas aeruginosais an opportunistic pathogen that causes serious acute or chronic infections in humans.Acute infections typically involve the type Ш secretion systems (T3SS) and bacterial motility,whereas chronic infectionsare often associated with biofilm formation and the type VI secretion system (T6SS). To identifynew genes required for pathogenesis, a transposon mutagenesis library was constructed and the gene PA4857, named tspR, was found to modulateT3SS gene expression. Deletion of P. aeruginosa tspRreduced the virulence in a mouse acute lung infection model and diminished cytotoxicity. Suppression of T3SS gene expression in the tspR mutant resulted from compromised translation of the T3SS master regulator ExsA. TspR negatively regulated two small RNAs, RsmYand RsmZ, which control RsmA. Our data demonstrated that defects inT3SS expression and biofilm formation in retS mutant could be partially restored by overexpression of tspR. Taken together, our results demonstrated thatthe newly identifiedretS-tspRpathway is coordinated with the retS-gacSsystem, which regulates the genes associated with acute and chronic infections andcontrols the lifestyle choice of P. aeruginosa

    Sparse general non-negative matrix factorization based on left semi-tensor product

    Get PDF
    The dimension reduction of large scale high-dimensional data is a challenging task, especially the dimension reduction of face data and the accuracy increment of face recognition in the large scale face recognition system, which may cause large storage space and long recognition time. In order to further reduce the recognition time and the storage space in the large scale face recognition systems, on the basis of the general non-negative matrix factorization based on left semi-tensor (GNMFL) without dimension matching constraints proposed in our previous work, we propose a sparse GNMFL/L (SGNMFL/L) to decompose a large number of face data sets in the large scale face recognition systems, which makes the decomposed base matrix sparser and suppresses the decomposed coefficient matrix. Therefore, the dimension of the basis matrix and the coefficient matrix can be further reduced. Two sets of experiments are conducted to show the effectiveness of the proposed SGNMFL/L on two databases. The experiments are mainly designed to verify the effects of two hyper-parameters on the sparseness of basis matrix factorized by SGNMFL/L, compare the performance of the conventional NMF, sparse NMF (SNMF), GNMFL, and the proposed SGNMFL/L in terms of storage space and time efficiency, and compare their face recognition accuracies with different noises. Both the theoretical derivation and the experimental results show that the proposed SGNMF/L can effectively save the storage space and reduce the computation time while achieving high recognition accuracy and has strong robustness

    An Optimization Approach for the Coordinated Low-Carbon Design of Product Family and Remanufactured Products

    Full text link
    [EN] With increasingly stringent environmental regulations on emission standards, enterprises and investigators are looking for effective ways to decrease GHG emission from products. As an important method for reducing GHG emission of products, low-carbon product family design has attracted more and more attention. Existing research, related to low-carbon product family design, did not take into account remanufactured products. Nowadays, it is popular to launch remanufactured products for environmental benefit and meeting customer needs. On the one hand, the design of remanufactured products is influenced by product family design. On the other hand, the launch of remanufactured products may cannibalize the sale of new products. Thus, the design of remanufactured products should be considered together with the product family design for obtaining the maximum profit and reducing the GHG emission as soon as possible. The purpose of this paper is to present an optimization model to concurrently determine product family design, remanufactured products planning and remanufacturing parameters selection with consideration of the customer preference, the total profit of a company and the total GHG emission from production. A genetic algorithm is applied to solve the optimization problem. The proposed method can help decision-makers to simultaneously determine the design of a product family and remanufactured products with a better trade-off between profit and environmental impact. Finally, a case study is performed to demonstrate the effectiveness of the presented approach.This research was funded by National Natural Science Foundation of China (grant number 51575264 and 51805253); the Fundamental Research Funds for the Central Universities (grant number NP2017105); Jiangsu Planned Projects for Postdoctoral Research Funds (grant number 2018K017C); and the Qin Lan Project.Wang, Q.; Tang, D.; Li, S.; Yang, J.; Salido, MA.; Giret Boggino, AS.; Zhu, H. (2019). An Optimization Approach for the Coordinated Low-Carbon Design of Product Family and Remanufactured Products. Sustainability. 11(2):1-22. https://doi.org/10.3390/su11020460S122112Mascle, C., & Zhao, H. P. (2008). Integrating environmental consciousness in product/process development based on life-cycle thinking. International Journal of Production Economics, 112(1), 5-17. doi:10.1016/j.ijpe.2006.08.016Kengpol, A., & Boonkanit, P. (2011). The decision support framework for developing Ecodesign at conceptual phase based upon ISO/TR 14062. International Journal of Production Economics, 131(1), 4-14. doi:10.1016/j.ijpe.2010.10.006Ferrer, G., & Swaminathan, J. M. (2010). Managing new and differentiated remanufactured products. European Journal of Operational Research, 203(2), 370-379. doi:10.1016/j.ejor.2009.08.007Sutherland, J. W., Adler, D. P., Haapala, K. R., & Kumar, V. (2008). A comparison of manufacturing and remanufacturing energy intensities with application to diesel engine production. CIRP Annals, 57(1), 5-8. doi:10.1016/j.cirp.2008.03.004Song, J.-S., & Lee, K.-M. (2010). Development of a low-carbon product design system based on embedded GHG emissions. Resources, Conservation and Recycling, 54(9), 547-556. doi:10.1016/j.resconrec.2009.10.012Qi, Y., & Wu, X. (2011). Low-carbon Technologies Integrated Innovation Strategy Based on Modular Design. Energy Procedia, 5, 2509-2515. doi:10.1016/j.egypro.2011.03.431Su, J. C. P., Chu, C.-H., & Wang, Y.-T. (2012). A decision support system to estimate the carbon emission and cost of product designs. International Journal of Precision Engineering and Manufacturing, 13(7), 1037-1045. doi:10.1007/s12541-012-0135-yKuo, T. C., Chen, H. M., Liu, C. Y., Tu, J.-C., & Yeh, T.-C. (2014). Applying multi-objective planning in low-carbon product design. International Journal of Precision Engineering and Manufacturing, 15(2), 241-249. doi:10.1007/s12541-014-0331-zXu, Z.-Z., Wang, Y.-S., Teng, Z.-R., Zhong, C.-Q., & Teng, H.-F. (2015). Low-carbon product multi-objective optimization design for meeting requirements of enterprise, user and government. Journal of Cleaner Production, 103, 747-758. doi:10.1016/j.jclepro.2014.07.067He, B., Wang, J., Huang, S., & Wang, Y. (2015). Low-carbon product design for product life cycle. Journal of Engineering Design, 26(10-12), 321-339. doi:10.1080/09544828.2015.1053437Chiang, T.-A., & Che, Z. H. (2015). A decision-making methodology for low-carbon electronic product design. Decision Support Systems, 71, 1-13. doi:10.1016/j.dss.2015.01.004He, B., Tang, W., Wang, J., Huang, S., Deng, Z., & Wang, Y. (2015). Low-carbon conceptual design based on product life cycle assessment. The International Journal of Advanced Manufacturing Technology, 81(5-8), 863-874. doi:10.1007/s00170-015-7253-5(Roger) Jiao, J., Simpson, T. W., & Siddique, Z. (2007). Product family design and platform-based product development: a state-of-the-art review. Journal of Intelligent Manufacturing, 18(1), 5-29. doi:10.1007/s10845-007-0003-2Francalanza, E., Borg, J. C., & Constantinescu, C. L. (2012). A Case for Assisting ‘Product Family’ Manufacturing System Designers. Procedia CIRP, 3, 376-381. doi:10.1016/j.procir.2012.07.065Bryan, A., Wang, H., & Abell, J. (2013). Concurrent Design of Product Families and Reconfigurable Assembly Systems. Journal of Mechanical Design, 135(5). doi:10.1115/1.4023920Wang, Q., Tang, D., Yin, L., Salido, M. A., Giret, A., & Xu, Y. (2016). Bi-objective optimization for low-carbon product family design. Robotics and Computer-Integrated Manufacturing, 41, 53-65. doi:10.1016/j.rcim.2016.02.001Tang, D., Wang, Q., & Ullah, I. (2016). Optimisation of product configuration in consideration of customer satisfaction and low carbon. International Journal of Production Research, 55(12), 3349-3373. doi:10.1080/00207543.2016.1231430Kim, S., & Moon, S. K. (2017). Sustainable platform identification for product family design. Journal of Cleaner Production, 143, 567-581. doi:10.1016/j.jclepro.2016.12.073Xiao, W., Du, G., Zhang, Y., & Liu, X. (2018). Coordinated optimization of low-carbon product family and its manufacturing process design by a bilevel game-theoretic model. Journal of Cleaner Production, 184, 754-773. doi:10.1016/j.jclepro.2018.02.240Mangun, D., & Thurston, D. L. (2002). Incorporating component reuse, remanufacture, and recycle into product portfolio design. IEEE Transactions on Engineering Management, 49(4), 479-490. doi:10.1109/tem.2002.807292Debo, L. G., Toktay, L. B., & Wassenhove, L. N. V. (2009). Joint Life-Cycle Dynamics of New and Remanufactured Products. Production and Operations Management, 15(4), 498-513. doi:10.1111/j.1937-5956.2006.tb00159.xVorasayan, J., & Ryan, S. M. (2009). Optimal Price and Quantity of Refurbished Products. Production and Operations Management, 15(3), 369-383. doi:10.1111/j.1937-5956.2006.tb00251.xKwak, M., & Kim, H. M. (2011). Assessing product family design from an end-of-life perspective. Engineering Optimization, 43(3), 233-255. doi:10.1080/0305215x.2010.482990Kwak, M., & Kim, H. (2012). Market Positioning of Remanufactured Products With Optimal Planning for Part Upgrades. Journal of Mechanical Design, 135(1), 011007. doi:10.1115/1.4023000Debo, L. G., Toktay, L. B., & Van Wassenhove, L. N. (2005). Market Segmentation and Product Technology Selection for Remanufacturable Products. Management Science, 51(8), 1193-1205. doi:10.1287/mnsc.1050.0369Ferguson, M. E., & Toktay, L. B. (2009). The Effect of Competition on Recovery Strategies. Production and Operations Management, 15(3), 351-368. doi:10.1111/j.1937-5956.2006.tb00250.xJin, Y., Muriel, A., & Lu, Y. (2015). When to Offer Lower Quality or Remanufactured Versions of a Product. Decision Sciences, 47(4), 699-719. doi:10.1111/deci.12175Liu, B., Holmbom, M., Segerstedt, A., & Chen, W. (2014). Effects of carbon emission regulations on remanufacturing decisions with limited information of demand distribution. International Journal of Production Research, 53(2), 532-548. doi:10.1080/00207543.2014.957875Wang, Y., Chen, W., & Liu, B. (2017). Manufacturing/remanufacturing decisions for a capital-constrained manufacturer considering carbon emission cap and trade. Journal of Cleaner Production, 140, 1118-1128. doi:10.1016/j.jclepro.2016.10.058Yenipazarli, A. (2016). Managing new and remanufactured products to mitigate environmental damage under emissions regulation. European Journal of Operational Research, 249(1), 117-130. doi:10.1016/j.ejor.2015.08.020Perera, H. S. ., Nagarur, N., & Tabucanon, M. T. (1999). Component part standardization: A way to reduce the life-cycle costs of products. International Journal of Production Economics, 60-61, 109-116. doi:10.1016/s0925-5273(98)00179-0Jiao, J., & Zhang, Y. (2005). Product portfolio planning with customer-engineering interaction. IIE Transactions, 37(9), 801-814. doi:10.1080/07408170590917011Mukhopadhyay, S. K., & Ma, H. (2009). Joint procurement and production decisions in remanufacturing under quality and demand uncertainty. International Journal of Production Economics, 120(1), 5-17. doi:10.1016/j.ijpe.2008.07.032Wang, K., & Choi, S. H. (2014). A holonic approach to flexible flow shop scheduling under stochastic processing times. Computers & Operations Research, 43, 157-168. doi:10.1016/j.cor.2013.09.01

    MULTI-AGV SCHEDULING OPTIMIZATION BASED ON NEURO-ENDOCRINE COORDINATION MECHANISM 

    Get PDF
    Ovaj se završni radi bavi mobilnim robotima koji su pokretani nogama. Rad se sastoji od dvije veće cjeline. Prvi dio rada donosi literaturni pregled mobilnih robota pokretanih nogama te daje njihovu podjelu. Mobilne robote pokretane nogama najčešće dijelimo prema broju nogu, ali i po ostalim fizičkim karakteristikama. U radu se govori o osnovnim prednostima i nedostacima pri konstruiranju i upravljanju ovakvih robota. Većina takvih robota izrađena je po uzoru na neku životinju ili čovjeka, odnosno imitirajući prirodu. Takav pristup proučavanja i preslikavanja životinjskih karakteristika u tehničke sustave naziva se biomimikrija. Biomimikrija je očita i u drugom dijelu rada koji se bavi adaptacijom već postojeće robotske platforme. U drugom dijelu rada se razrađuje prilagodba četveronožnog paukolikog robota za novoodabrano elektroničko sklopovlje. Nakon modeliranja konstrukcije u programskom paketu CATIA, izrađen je prototip na uređaju za brzu izradu prototipova. Posebnost ove platforme jest da se svi aktuatori nalaze unutar samog tijela robota, a ne u nogama. Na taj se način eliminira prekomjerna masa nogu. Svaka od ĉetiri noge se pokreće pomoću polužnog mehanizma koji se sastoji od četiri štapa. Zbog te karakteristike javlja se neuobičajena kinematika robota. Ovakvom konstrukcijom robot postaje izazovna platforma za proučavanje algoritama umjetne inteligencije koji se implemetiraju za ostvarivanje gibanja. Takvi algoritmi daju puno bolje rezultate od sekvencijalnog programiranja kod složenijih robotskih struktura.This final project addresses the issue of legged mobile robots. The paper consists of two major parts. First part of the paper brings literature review of legged mobile robots and classifies them. Legged mobile robots most commonly differ by the number of their legs, but they can be distinguished by many other physical characteristics. The paper tackles elementary advantages and disadvantages when designing and controlling this type of a robot. Most legged mobile robots are made by imitating animals and humans. This approach of implementing knowledge obtained form observing nature into technical systems is called biomimetics. Biomimetics is also obvious in the second part of this paper. The second part of the paper elaborates adaptation of already existing quadruped robotic platform for the new electronic circuitry. After 3D designing the model in the CATIA software, prototype is printed on the rapid prototyping printer. This platform is unique because all the actuators are located in the body of the robot, and none of them is in the robot's leggs. Specifically, each of the four legs is controlled by separete four-bar linkage mechanism. Consequently, robot's mass is reduced, however, complexity of control is increased. This design causes unconventional kinematics, thus providing challenging platform for gait-learning algorithms. These algorithms excel in complicated structures like this, where sequential programming tends to underperform

    Controlled Knoevenagel reactions of methyl groups of 1,3,5,7-tetramethyl BODIPY dyes for unique BODIPY dyes

    Get PDF
    Formyl groups at 6- and 2,6-positions initiated Knoevenagel reactions of the methyl groups at the 7, and 1,7-positions of 1,3,5,7-tetramethyl BODIPY dyes with aromatic aldehydes. Formation of vinyl bonds at the 7-, and 1,7-positions facilitates further Knoevenagel reactions of the methyl groups at the 3,5-positions. This approach offers fast, facile and versatile ways to prepare potential novel building blocks of BODIPY dyes for conjugated oligomers, dendrimers, and highly water-soluble, near-infrared emissive sensing materials

    SUMOylation of Grb2 enhances the ERK activity by increasing its binding with Sos1

    Get PDF
    BACKGROUND: Grb2 (Growth factor receptor-bound protein 2) is a key adaptor protein in maintaining the ERK activity via linking Sos1 (Son of sevenless homolog 1) or other proteins to activated RTKs, such as EGFR. Currently, little knowledge is available concerning the post-translational modification (PTM) of Grb2 except for its phosphorylation. Since emerging evidences have highlighted the importance of SUMOylation (Small ubiquitin-related modifier), a reversible PTM, in modulating protein functions, we wondered if Grb2 could be SUMOylated and thereby influences its functions especially involved in the Ras/MEK/ERK pathway. METHODS: SUMOylation of Grb2 was analyzed with the in vivo SUMOylation assay using the Ni(2+)-NTA affinity pulldown and the in vitro E.coli-based SUMOylation assay. To test the ERK activity and cell transformation, the murine fibroblast cell line NIH/3T3 and the murine colon cancer cell line CMT-93 were used for the experiments including Grb2 knockdown, ectopic re-expression, cell transformation and migration. Immunoprecipitation (IP) was employed for seeking proteins that interact with SUMO modified Grb2. Xenograft tumor model in mice was conducted to verify that Grb2 SUMOylation regulated tumorigenesis in vivo. RESULTS: Grb2 can be SUMOylated by SUMO1 at lysine 56 (K(56)), which is located in the linker region between the N-terminal SH3 domain and the SH2 domain. Knockdown of Grb2 reduced the ERK activity and suppressed cell motility and tumorigenesis in vitro and in vivo, which were all rescued by stable ectopic re-expression of wild-type Grb2 but not the mutant Grb2(K56R). Furthermore, Grb2 SUMOylation at K(56) increased the formation of Grb2-Sos1 complex, which sequentially leads to the activation of Ras/MEK/MAPK pathway. CONCLUSIONS: Our results provide evidences that Grb2 is SUMOylated in vivo and this modification enhances ERK activities via increasing the formation of Grb2-Sos1 complex, and may consequently promote cell motility, transformation and tumorigenesis
    corecore