1,932 research outputs found
Chemosensory sensitivity reflects reproductive status in the ant Harpegnathos saltator.
Insects communicate with pheromones using sensitive antennal sensilla. Although trace amounts of pheromones can be detected by many insects, context-dependent increased costs of high sensitivity might lead to plasticity in sensillum responsiveness. We have functionally characterized basiconic sensilla of the ant Harpegnathos saltator for responses to general odors in comparison to cuticular hydrocarbons which can act as fertility signals emitted by the principal reproductive(s) of a colony to inhibit reproduction by worker colony members. When released from inhibition workers may become reproductive gamergates. We observed plasticity in olfactory sensitivity after transition to reproductive status with significant reductions in electrophysiological responses to several long-chained cuticular hydrocarbons. Although gamergates lived on average five times longer than non-reproductive workers, the shift to reproductive status rather than age differences matched the pattern of changes in olfactory sensitivity. Decreasing sensillum responsiveness to cuticular hydrocarbons could potentially reduce mutually inhibitory or self-inhibitory effects on gamergate reproduction
Comparison of the Inverse Probability of Treatment Weighted (IPTW) Estimator With a Naïve Estimator in the Analysis of Longitudinal Data With Time-Dependent Confounding: A Simulation Study
A simulation study was conducted to compare estimates from a naïve estimator, using standard conditional regression, and an IPTW (Inverse Probability of Treatment Weighted) estimator, to true causal parameters for a given MSM (Marginal Structural Model). The study was extracted from a larger epidemiological study (Longitudinal Study of Effects of Physical Activity and Body Composition on Functional Limitation in the Elderly, by Tager et. al [accepted, Epidemiology, September 2003]), which examined the causal effects of physical activity and body composition on functional limitation. The simulation emulated the larger study in terms of the exposure and outcome variables of interest-- physical activity (LTPA), body composition (LNFAT), and physical limitation (PF), but used one time-dependent confounder (HEALTH) to illustrate the effects of estimating causal effects in the presence of time-dependent confounding. In addition to being a time-dependent confounder (i.e. predictor of exposure and outcome over time), HEALTH was also affected by past treatment. Under these conditions, naïve estimates are known to give biased estimates of the causal effects of interest (Robins, 2000). The true causal parameters for LNFAT (-0.61) and LTPA (-0.70) were obtained by assessing the log-odds of functional limitation for a 1-unit increase in LNFAT and participation in vigorous exercise in an ideal experiment in which the counterfactual outcomes were known for every possible combination of LNFAT and LTPA for each subject. Under conditions of moderate confounding, the IPTW estimates for LNFAT and LTPA were -0.62 and -0.94, respectively, versus the naïve estimates of -0.78 and -0.80. For increased levels of confounding of the LNFAT and LTPA variables, the IPTW estimates were -0.60 and -1.28, respectively, and the naïve estimates were -0.85 and -0.87. The bias of the IPTW estimates, particularly under increased levels of confounding, was explored and linked to violation of particular assumptions regarding the IPTW estimation of causal parameters for the MSM
Label-Free Analysis and Sorting of Microalgae and Cyanobacteria in Microdroplets by Intrinsic Chlorophyll Fluorescence for the Identification of Fast Growing Strains.
Microalgae and cyanobacteria are promising organisms for sustainable biofuel production, but several challenges remain to make this economically viable, including identification of optimized strains with high biomass productivity. Here we report on a novel methodology for the label-free screening and sorting of cyanobacteria and microalgae in a microdroplet platform. We show for the first time that chlorophyll fluorescence can be used to measure differences in biomass between populations of picoliter microdroplets containing different species of cyanobacteria, Synechocystis PCC 6803 and Synechococcus PCC 7002, which exhibit different growth dynamics in bulk culture. The potential and robustness of this label-free screening approach is further demonstrated by the screening and sorting of cells of the green alga Chlamydomonas reinhardtii encapsulated in droplets.Author R.J.B. was supported by a Doctoral Training Grant from the Engineering and Physical Sciences Research Council (EPSRC) of the UK (Reference EP/P505445/1), and author J.J.L. was in receipt of a studentship from the Biotechnology and Biological Sciences Research Council (BBSRC) of the U.K. as part of the Cambridge BBSRC-DTP Programme (Reference BB/J014540/1). Authors S.A.-C., C.A., and A.G.S. acknowledge funding from the EC within the FP7 DEMA project, Grant Agreement No. 309086, and authors Z.Y., C.A., and A.G.S. were in receipt of funding from BBSRC sLoLa Award Reference BB/L002957/1.This is the final version of the article. It first appeared from the American Chemical Society via https://doi.org/10.1021/acs.analchem.6b0236
The 14C(n,g) cross section between 10 keV and 1 MeV
The neutron capture cross section of 14C is of relevance for several
nucleosynthesis scenarios such as inhomogeneous Big Bang models, neutron
induced CNO cycles, and neutrino driven wind models for the r process. The
14C(n,g) reaction is also important for the validation of the Coulomb
dissociation method, where the (n,g) cross section can be indirectly obtained
via the time-reversed process. So far, the example of 14C is the only case with
neutrons where both, direct measurement and indirect Coulomb dissociation, have
been applied. Unfortunately, the interpretation is obscured by discrepancies
between several experiments and theory. Therefore, we report on new direct
measurements of the 14C(n,g) reaction with neutron energies ranging from 20 to
800 keV
Modeling bursts and heavy tails in human dynamics
Current models of human dynamics, used from risk assessment to
communications, assume that human actions are randomly distributed in time and
thus well approximated by Poisson processes. We provide direct evidence that
for five human activity patterns the timing of individual human actions follow
non-Poisson statistics, characterized by bursts of rapidly occurring events
separated by long periods of inactivity. We show that the bursty nature of
human behavior is a consequence of a decision based queuing process: when
individuals execute tasks based on some perceived priority, the timing of the
tasks will be heavy tailed, most tasks being rapidly executed, while a few
experiencing very long waiting times. We discuss two queueing models that
capture human activity. The first model assumes that there are no limitations
on the number of tasks an individual can hadle at any time, predicting that the
waiting time of the individual tasks follow a heavy tailed distribution with
exponent alpha=3/2. The second model imposes limitations on the queue length,
resulting in alpha=1. We provide empirical evidence supporting the relevance of
these two models to human activity patterns. Finally, we discuss possible
extension of the proposed queueing models and outline some future challenges in
exploring the statistical mechanisms of human dynamics.Comment: RevTex, 19 pages, 8 figure
Hole dynamics in noble metals
We present a detailed analysis of hole dynamics in noble metals (Cu and Au),
by means of first-principles many-body calculations. While holes in a
free-electron gas are known to live shorter than electrons with the same
excitation energy, our results indicate that d-holes in noble metals exhibit
longer inelastic lifetimes than excited sp-electrons, in agreement with
experiment. The density of states available for d-hole decay is larger than
that for the decay of excited electrons; however, the small overlap between d-
and sp-states below the Fermi level increases the d-hole lifetime. The impact
of d-hole dynamics on electron-hole correlation effects, which are of relevance
in the analysis of time-resolved two-photon photoemission experiments, is also
addressed.Comment: 4 pages, 2 figures, to appear in Phys. Rev. Let
Impaired Competence for Pretense in Children with Autism: Exploring Potential Cognitive Predictors.
Lack of pretense in children with autism has been explained by a number of theoretical explanations, including impaired mentalising, impaired response inhibition, and weak central coherence. This study aimed to empirically test each of these theories. Children with autism (n=60) were significantly impaired relative to controls (n=65) when interpreting pretense, thereby supporting a competence deficit hypothesis. They also showed impaired mentalising and response inhibition, but superior local processing indicating weak central coherence. Regression analyses revealed that mentalising significantly and independently predicted pretense. The results are interpreted as supporting the impaired mentalising theory and evidence against competing theories invoking impaired response inhibition or a local processing bias. The results of this study have important implications for treatment and intervention
Normal hindfoot alignment assessed by weight bearing CT : presence of a constitutional valgus?
- …
