192 research outputs found

    Spatial and temporal variability and long-term trends in skew surges globally

    Get PDF
    Storm surges and the resulting extreme high sea levels are among the most dangerous natural disasters and are responsible for widespread social, economic and environmental consequences. Using a set of 220 tide gauges, this paper investigates the temporal variations in storm surges around the world and the spatial coherence of its variability. We compare results derived from two parameters used to represent storm surge: skew surge and the more traditional, non-tidal residual. We determine the extent of tide-surge interaction, at each study site, and find statistically significant (95% confidence) levels of tide-surge interaction at 59% of sites based on tidal level and 81% of sites based on tidal-phase. The tide-surge interaction was strongest in regions of shallow bathymetry such as the North Sea, north Australia and the Malay Peninsula. At most sites the trends in the skew surge time series were similar to those of non-tidal residuals, but where there were large differences in trends, the sites tended to have a large tidal range. Only 13% of sites had a statistically significant trend in skew surge, and of these approximately equal numbers were positive and negative. However, for trends in the non-tidal residual there were significantly more negative trends. We identified 8 regions where there were strong positive correlations in skew surge variability between sites, which meant that a regional index could be created to represent these groups of sites. Despite strong correlations between some regional skew surge indices, none were significant at the 95% level, however, at the 80% level there was significant positive correlation between the north-west Atlantic—south and the North Sea. Correlations between the regional skew surge indices and climate indices only became significant at the 80% level, where Ni?o 4 was positively correlated with the Gulf of Mexico skew surge index and negatively correlated with the east Australia skew surge index. The inclusion of autocorrelation in the calculation of correlation greatly reduced their significance, especially in the short time-series used for the regional skew surge indices. Skew surge improved the representation of storm surge magnitudes, and therefore allows a more accurate detection of changes on secular and inter-annual time scales

    Global secular changes in different tidal high water, low water and range levels

    No full text
    Tides exert a major control on the coastal zone by influencing high sea levels and coastal flooding, navigation, sediment dynamics, and ecology. Therefore, any changes to tides have wide ranging and important implications. In this paper, we uniquely assess secular changes in 15 regularly used tidal levels (five high water, five low water and five tidal ranges), which have direct practical applications. Using sea level data from 220 tide gauge sites, we found changes have occurred in all analyzed tidal levels in many parts of the world. For the tidal levels assessed, between 36% and 63% of sites had trends significantly different (at 95% confidence level) from zero. At certain locations, the magnitude of the trends in tidal levels were similar to trends in mean sea level over the last century, with observed changes in tidal range and high water levels of over 5 mm/yr and 2 mm/yr, respectively. More positive than negative trends were observed in tidal ranges and high water levels, and vice versa for low water levels. However we found no significant correlation between trends in mean sea level (MSL) and any tidal levels. Spatially coherent trends were observed in some regions, including the north-east Pacific, German Bight and Australasia, and we also found that differences in trends occur between different tidal levels. This implies that analyzing different tidal levels is important. Because changes in the tide are widespread and of similar magnitude to MSL rise at a number sites, changes in tides should be considered in coastal risk assessments

    A geological perspective on potential future sea-level rise

    Get PDF
    During ice-age cycles, continental ice volume kept pace with slow, multi-millennial scale, changes in climate forcing. Today, rapid greenhouse gas (GHG) increases have outpaced ice-volume responses, likely committing us to > 9 m of long-term sea-level ri

    A comparison of the 31 January–1 February 1953 and 5–6 December 2013 coastal flood events around the UK

    Get PDF
    A North Sea storm surge during 31 January–1 February 1953 caused Northwest Europe's most severe coastal floods in living memory. This event killed more than 2000 people on the coasts of England, the Netherlands, and Belgium. In the UK, where this study focuses, this event was a pivotal influence for flood risk management. Subsequent progress included a national tide gauge network, a storm surge forecasting and warning service, and major defense upgrades such as the Thames Barrier. Almost 60-years later, on 5–6 December 2013 Storm “Xaver” generated a surge event of similar magnitude. This paper describes a detailed comparison of these two events in the UK in terms of: (1) the meteorological conditions; (2) the observed high sea levels; and (3) the coastal flooding and impacts. The 1953 storm had a more southerly track and generated bigger waves due to the north-northwesterly onshore winds off East Anglia. The 2013 storm had a more west-to-east path from the north Atlantic to Scandinavia. Consequently, the 1953 high waters were more extreme in the southern North Sea. However, the 2013 event coincided with larger astronomical tides, resulting in a larger spatial “footprint”. The extreme sea levels impacted communities on the west, east, and south coasts, with 2800 properties flooded during the 2013 event, compared to 24,000 properties (mainly between the Humber and Thames) in 1953. The 1953 floods remain a benchmark in the UK as an event which included failed defenses, damaged property and infrastructure and loss of life. Measures taken after 1953 greatly reduced the consequences of the 5–6 December 2013 storm. Continued monitoring of extreme sea levels and their consequences is important to inform a realistic perspective on future planning and resilience

    Improving Estuarine Flood Risk Knowledge through Documentary Data Using Multiple Correspondence Analysis

    Get PDF
    Estuarine margins are usually heavily occupied areas that are commonly affected by compound flooding triggers originating from different sources (e.g., coastal, fluvial, and pluvial). Therefore, estuarine flood management remains a challenge due to the need to combine the distinct dimensions of flood triggers and damages. Past flood data are critical for improve our understanding of flood risks in these areas, while providing the basis for a preliminary flood risk assessment, as required by European Floods Directive. This paper presents a spin-off database of estuarine flood events built upon previously existing databases and a framework for working with qualitative past flood information using multiple correspondence analysis. The methodology is presented, with steps ranging from a spin-off database building process to information extraction techniques, and the statistical method used was further explored through the study of information acquired from the categories and their relation to the dimensions. This work enabled the extraction of the most relevant estuarine flood risk indicators and demonstrates the transversal importance of triggers, since they are of utmost importance for the characterization of estuarine flood risks. The results showed a relation between sets of triggers and damages that are related to estuarine margin land use, demonstrating their ability to inform flood risk management options. This work provides a consistent and coherent approach to use qualitative information on past floods, as a useful contribution in the context of scarce data, where measured and documentary data are not simultaneously available.info:eu-repo/semantics/publishedVersio

    Mean sea level variability in the North Sea: Processes and implications

    Get PDF
    Mean sea level (MSL) variations across a range of time scales are examined for the North Sea under the consideration of different forcing factors since the late 19th century. We use multiple linear regression models, which are validated for the second half of the 20th century against the output of a tide+surge model, to determine the barotropic response of the ocean to fluctuations in atmospheric forcing. We find that local atmospheric forcing mainly initiates MSL variability on time scales up to a few years, with the inverted barometric effect dominating the variability along the UK and Norwegian coastlines and wind controlling the MSL variability in the south from Belgium up to Denmark. On decadal time scales, MSL variability mainly reflects steric changes, which are largely forced remotely. A spatial correlation analysis of altimetry observations and gridded steric heights suggests evidence for a coherent signal extending from the Norwegian shelf down to the Canary Islands. This fits with the theory of longshore wind forcing along the eastern boundary of the North Atlantic causing coastally trapped waves to propagate over thousands of kilometers along the continental slope. Implications of these findings are assessed with statistical Monte-Carlo experiments. It is demonstrated that the removal of known variability increases the signal to noise ratio with the result that: (i) linear trends can be estimated more accurately; (ii) possible accelerations (as expected, e.g., due to anthropogenic climate change) can be detected much earlier. Such information is of crucial importance for anticipatory coastal management, engineering, and planning

    Magnetoresistance in Co-hBN-NiFe tunnel junctions enhanced by resonant tunneling through single defects in ultrathin hBN barriers

    Full text link
    Hexagonal boron nitride (hBN) is a prototypical high-quality two-dimensional insulator and an ideal material to study tunneling phenomena, as it can be easily integrated in vertical van der Waals devices. For spintronic devices, its potential has been demonstrated both for efficient spin injection in lateral spin valves and as a barrier in magnetic tunnel junctions (MTJs). Here we reveal the effect of point defects inevitably present in mechanically exfoliated hBN on the tunnel magnetoresistance of Co-hBN-NiFe MTJs. We observe a clear enhancement of both the conductance and magnetoresistance of the junction at well-defined bias voltages, indicating resonant tunneling through magnetic (spin-polarized) defect states. The spin polarization of the defect states is attributed to exchange coupling of a paramagnetic impurity in the few-atomic-layer thick hBN to the ferromagnetic electrodes. This is confirmed by excellent agreement with theoretical modelling. Our findings should be taken into account in analyzing tunneling processes in hBN-based magnetic devices. More generally, our study shows the potential of using atomically thin hBN barriers with defects to engineer the magnetoresistance of MTJs and to achieve spin filtering, opening the door towards exploiting the spin degree of freedom in current studies of point defects as quantum emitters

    KwaZulu-Natal coastal erosion events of 2006/2007 and 2011: A predictive tool?

    Get PDF
    Severe coastal erosion occurred along the KwaZulu-Natal coastline between mid-May and November 2011. Analysis of this erosion event and comparison with previous coastal erosion events in 2006/2007 offered the opportunity to extend the understanding of the time and place of coastal erosion strikes. The swells that drove the erosion hotspots of the 2011 erosion season were relatively low (significant wave heights were between 2 m and 4.5 m) but of long duration. Although swell height was important, swell-propagation direction and particularly swell duration played a dominant role in driving the 2011 erosion event. Two erosion hotspot types were noted: sandy beaches underlain by shallow bedrock and thick sandy beaches. The former are triggered by high swells (as in March 2007) and austral winter erosion events (such as in 2006, 2007 and 2011). The latter become evident later in the austral winter erosion cycle. Both types were associated with subtidal shore-normal channels seaward of megacusps, themselves linked to megarip current heads. This 2011 coastal erosion event occurred during a year in which the lunar perigee sub-harmonic cycle (a ±4.4-year cycle) peaked, a pattern which appears to have recurred on the KwaZulu-Natal coast. If this pattern proves true, severe coastal erosion may be expected in 2015. Evidence indicates that coastal erosion is driven by the lunar nodal cycle peak but that adjacent lunar perigee sub-harmonic peaks can also cause severe coastal erosion. Knowing where and when coastal erosion may occur is vital for coastal managers and planners

    Tidal range energy resource assessment of the Gulf of California, Mexico

    Get PDF
    There is growing interest in harnessing renewable energy resources in Latin America. Converting the energy of the tides into electricity has the distinct advantage of being predictable, yet the tidal range resource of Latin America is largely unquantified. The northern part of the Gulf of California (GC) in Mexico has a relatively large mean tidal range (4m–5m), and so could be a potential site for tidal range energy exploitation. A detailed quantification of the theoretical tidal range energy resource was performed using tidal level predictions from a depth-averaged barotropic hydrodynamic model. In addition, a 0-D operation modelling approach was applied to determine the power that can be technically extracted at four key sites. The results show that the annual energy yield ranges from 20 to 50 kWh/m2, while the maximum values are between 45 and 50 kWh/m2 in the vicinity of the Gulf of Santa Clara. Within the region, the Gulf of Santa Clara is one of the most promising, delivering a technical annual energy output of 125 GWh (ebb-only generation), 159 GWh (two-way) and 174 GWh (two-way with pumping) within an impoundment area of 10 km2. This equates to 50%, 40% and 33% of the absolute energy conversion relative to a much-studied reference site (Swansea Bay, UK) that has been under consideration as the world’s first tidal lagoon power plant. This study provides the basis for more detailed analysis of the GC to guide selection of suitable sites for tidal range energy exploitation in the region
    corecore