85 research outputs found

    Modeling Nutrient and Plankton Processes in the California Coastal Transition Zone: 2. A Three-Dimensional Physical-Bio-Optical Model

    Get PDF
    A three-dimensional (3-D) primitive equation model, developed to simulate the circulation features (filaments) observed in the California coastal transition zone (CTZ), was coupled to a nine-component food web model and a bio-optical model. The simulated flow fields from a 3-D primitive equation model are used to advect the constituents of the food web model, which include silicate, nitrate, ammonium, two phytoplankton size fractions, copepods, doliolids, euphausiids, and a detritus pool. The bio-optical model simulates the wavelength-dependent attenuation of the subsurface irradiance field. The overall objective of this modeling study was to understand and quantify the processes that contribute to the spatial and temporal development of nutrient and plankton distributions in the CTZ. The resulting simulated 3-D nutrient, plankton and submarine light fields agree well with those observed within the CTZ. Specifically, high nutrient and plankton biomass occur onshore and within the core of the simulated filament. Variations in the depth of the 1% light level, which result from the simulated plankton distributions, shallows to less than 30 m in regions of high phytoplankton biomass, and deepens to greater than 75 m in regions of low phytoplankton biomass. The onshore and offshore surface carbon flux patterns are similar in shape due to the meander-like flow patterns of the filament; however, the net across-shore area-integrated carbon flux is predominantly offshore. The total 20-day integrated carbon transport for the model domain varies with distance from shore and is highest (35 × 109 g C) in the region where the filament circulation pattern develops into an anticyclonic and cyclonic pair of eddies. The annual integrated carbon transport by filaments along the California coast is estimated to be 1.89 × 1012 g C

    Looking Forward Transdisciplinary Modeling, Environmental Forecasting, and Management

    Get PDF
    In the 1970s, the International Decade of Ocean Exploration (IDOE) set the stage for an era of global ocean research programs (NRC, 1999). Although scientists had long explored the "seven seas," it was only in the late 1960s that observing the ocean at synoptic scales became feasible. This capability, together with the lessons learned from IDOE, allowed for the growth of major oceanographic initiatives. In particular, the late 1980s and the 1990s marked two decades of large oceanographic programs, two of which, the World Ocean Circulation Experiment (WOCE; http://www.nodc.noaa.gov/woce/wdiu/wocedocs/index.htm#design), and the Joint Global Ocean Flux Study (JGOFS; http://www1.whoi.edu), resulted in important advances and transformations in ocean research that fostered the subsequent development of the Global Ocean Ecosystem Dynamics program (GLOBEC; http://www.globec.org)

    FVCOM validation experiments : comparisons with ROMS for three idealized barotropic test problems

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C07042, doi:10.1029/2007JC004557.The unstructured-grid Finite-Volume Coastal Ocean Model (FVCOM) is evaluated using three idealized benchmark test problems: the Rossby equatorial soliton, the hydraulic jump, and the three-dimensional barotropic wind-driven basin. These test cases examine the properties of numerical dispersion and damping, the performance of the nonlinear advection scheme for supercritical flow conditions, and the accuracy of the implicit vertical viscosity scheme in barotropic settings, respectively. It is demonstrated that FVCOM provides overall a second-order spatial accuracy for the vertically averaged equations (i.e., external mode), and with increasing grid resolution the model-computed solutions show a fast convergence toward the analytic solutions regardless of the particular triangulation method. Examples are provided to illustrate the ability of FVCOM to facilitate local grid refinement and speed up computation. Comparisons are also made between FVCOM and the structured-grid Regional Ocean Modeling System (ROMS) for these test cases. For the linear problem in a simple rectangular domain, i.e., the wind-driven basin case, the performance of the two models is quite similar. For the nonlinear case, such as the Rossby equatorial soliton, the second-order advection scheme used in FVCOM is almost as accurate as the fourth-order advection scheme implemented in ROMS if the horizontal resolution is relatively high. FVCOM has taken advantage of the new development in computational fluid dynamics in resolving flow problems containing discontinuities. One salient feature illustrated by the three-dimensional barotropic wind-driven basin case is that FVCOM and ROMS simulations show different responses to the refinement of grid size in the horizontal and in the vertical.For this work, H. Huang and G. Cowles were supported by the Massachusetts Marine Fisheries Institute (MFI) through NOAA grants DOC/NOAA/NA04NMF4720332 and DOC/ NOAA/NA05NMF472113; C. Chen was supported by NSF grants (OCE0234545, OCE0606928, OCE0712903, OCE0732084, and OCE0726851), NOAA grants (NA160P2323, NA06RG0029, and NA960P0113), MIT Sea grant (2006-RC-103), and Georgia Sea grant (NA26RG0373 and NA66RG0282); C. Winant was supported through NSF grant OCE-0726673; R. Beardsley was supported through NSF OCE—0227679 and the WHOI Smith Chair; K. Hedstrom was supported through NASA grant NAG13– 03021 and the Arctic Region Supercomputing Center; and D. Haidvogel was supported through grants ONR N00014- 03-1-0683 and NSF OCE 043557

    Recent Arctic climate change and its remote forcing of Northwest Atlantic shelf ecosystems

    Get PDF
    Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 3 (2012): 208-213, doi:10.5670/oceanog.2012.64.During recent decades, historically unprecedented changes have been observed in the Arctic as climate warming has increased precipitation, river discharge, and glacial as well as sea-ice melting. Additionally, shifts in the Arctic's atmospheric pressure field have altered surface winds, ocean circulation, and freshwater storage in the Beaufort Gyre. These processes have resulted in variable patterns of freshwater export from the Arctic Ocean, including the emergence of great salinity anomalies propagating throughout the North Atlantic. Here, we link these variable patterns of freshwater export from the Arctic Ocean to the regime shifts observed in Northwest Atlantic shelf ecosystems. Specifically, we hypothesize that the corresponding salinity anomalies, both negative and positive, alter the timing and extent of water-column stratification, thereby impacting the production and seasonal cycles of phytoplankton, zooplankton, and higher-trophic-level consumers. Should this hypothesis hold up to critical evaluation, it has the potential to fundamentally alter our current understanding of the processes forcing the dynamics of Northwest Atlantic shelf ecosystems.Funding for this research was provided by the National Science Foundation as part of the Regional and Pan-Regional Synthesis Phases of the US Global Ocean Ecosystem (GLOBEC) Program

    Variability of Iberian upwelling implied by ERA-40 and ERA-Interim reanalyses

    Get PDF
    The Regional Ocean Modeling System ocean model is used to simulate the decadal evolution of the regional waters in offshore Iberia in response to atmospheric fields given by ECMWF ERA-40 (1961–2001) and ERA-Interim (1989–2008) reanalyses. The simulated sea surface temperature (SST) fields are verified against satellite AVHRR SST, and they are analysed to characterise the variability and trends of coastal upwelling in the region. Opposing trends in upwelling frequency are found at the northern limit, where upwelling has been decreasing in recent decades, and at its southern edge, where there is some evidence of increased upwelling. These results confirm previous observational studies and, more importantly, indicate that observed SST trends are not only due to changes in radiative or atmospheric heat fluxes alone but also due to changes in upwelling dynamics, suggesting that such a process may be relevant in climate change scenarios

    Numerical Ocean Circulation Modelling: Present Status and Future Directions

    No full text
    corecore