147 research outputs found
Light-Induced Charge Density Wave in LaTe
When electrons in a solid are excited with light, they can alter the free
energy landscape and access phases of matter that are beyond reach in thermal
equilibrium. This accessibility becomes of vast importance in the presence of
phase competition, when one state of matter is preferred over another by only a
small energy scale that, in principle, is surmountable by light. Here, we study
a layered compound, LaTe, where a small in-plane (a-c plane) lattice
anisotropy results in a unidirectional charge density wave (CDW) along the
c-axis. Using ultrafast electron diffraction, we find that after
photoexcitation, the CDW along the c-axis is weakened and subsequently, a
different competing CDW along the a-axis emerges. The timescales characterizing
the relaxation of this new CDW and the reestablishment of the original CDW are
nearly identical, which points towards a strong competition between the two
orders. The new density wave represents a transient non-equilibrium phase of
matter with no equilibrium counterpart, and this study thus provides a
framework for unleashing similar states of matter that are "trapped" under
equilibrium conditions
Infrared Nanoimaging of Hydrogenated Perovskite Nickelate Synaptic Devices
Solid-state devices made from correlated oxides such as perovskite nickelates
are promising for neuromorphic computing by mimicking biological synaptic
function. However, comprehending dopant action at the nanoscale poses a
formidable challenge to understanding the elementary mechanisms involved. Here,
we perform operando infrared nanoimaging of hydrogen-doped correlated
perovskite, neodymium nickel oxide (H-NdNiO3) devices and reveal how an applied
field perturbs dopant distribution at the nanoscale. This perturbation leads to
stripe phases of varying conductivity perpendicular to the applied field, which
define the macroscale electrical characteristics of the devices. Hyperspectral
nano-FTIR imaging in conjunction with density functional theory calculations
unveil a real-space map of multiple vibrational states of H-NNO associated with
OH stretching modes and their dependence on the dopant concentration. Moreover,
the localization of excess charges induces an out-of-plane lattice expansion in
NNO which was confirmed by in-situ - x-ray diffraction and creates a strain
that acts as a barrier against further diffusion. Our results and the
techniques presented here hold great potential to the rapidly growing field of
memristors and neuromorphic devices wherein nanoscale ion motion is
fundamentally responsible for function.Comment: 30 pages, 5 figures in the main text and 5 figures in the
Supplementary Materia
Recommended from our members
Light-induced charge density wave in LaTe3
When electrons in a solid are excited with light, they can alter the free
energy landscape and access phases of matter that are beyond reach in thermal
equilibrium. This accessibility becomes of vast importance in the presence of
phase competition, when one state of matter is preferred over another by only a
small energy scale that, in principle, is surmountable by light. Here, we study
a layered compound, LaTe, where a small in-plane (a-c plane) lattice
anisotropy results in a unidirectional charge density wave (CDW) along the
c-axis. Using ultrafast electron diffraction, we find that after
photoexcitation, the CDW along the c-axis is weakened and subsequently, a
different competing CDW along the a-axis emerges. The timescales characterizing
the relaxation of this new CDW and the reestablishment of the original CDW are
nearly identical, which points towards a strong competition between the two
orders. The new density wave represents a transient non-equilibrium phase of
matter with no equilibrium counterpart, and this study thus provides a
framework for unleashing similar states of matter that are "trapped" under
equilibrium conditions
Analisis Portofolio Optimal Dengan Single Index Model Untuk Meminimumkan Risiko Bagi Investor Di Bursa Efek Indonesia (Studi Pada Saham Indeks Kompas 100 Periode Februari 2010-juli 2014)
Investments can be made in the capital market, capital market instruments which are mostly attractive for investors is stock. Stock provides a return in the form of capital gains and dividends yield, not only noticing the return, investors need to pay attention to the investments risk. Unsystematis risk can be minimized by forming the optimal portfolio using one of the methods that is single index model. Study purpose is to knowing the stocks forming the optimal portfolio, the proportion of funds allocated to each stocks, the level of expectation return and risk.The method used in this research is descriptive research method with a quantitative approach. The samples used were 46 stocks in Kompas 100 Index, which meets the criteria for sampling. The results showed that 12 stocks of forming optimal portfolio, the stocks of which are UNVR, TRAM, MNCN, BHIT, JSMR, BMTR, GJTL, KLBF, AALI, CPIN, AKRA, and ASRI. Stock with highest proportion of funds is TRAM (23,52%), stock with lowest proportion of funds is AALI (0,62%). Portfolio which are formed will give return expectations by 3,05477% and carry the risk for about 0,1228%
Dynamical slowing down in an ultrafast photo-induced phase transition
Complex systems, which consist of a large number of interacting constituents,
often exhibit universal behavior near a phase transition. A slowdown of certain
dynamical observables is one such recurring feature found in a vast array of
contexts. This phenomenon, known as critical slowing down, is well studied
mostly in thermodynamic phase transitions. However, it is less understood in
highly nonequilibrium settings, where the time it takes to traverse the phase
boundary becomes comparable to the timescale of dynamical fluctuations. Using
transient optical spectroscopy and femtosecond electron diffraction, we studied
a photo-induced transition of a model charge-density-wave (CDW) compound,
LaTe. We observed that it takes the longest time to suppress the order
parameter at the threshold photoexcitation density, where the CDW transiently
vanishes. This finding can be quantitatively captured by generalizing the
time-dependent Landau theory to a system far from equilibrium. The experimental
observation and theoretical understanding of dynamical slowing down may offer
insight into other general principles behind nonequilibrium phase transitions
in many-body systems
Characterization of LC-MS based urine metabolomics in healthy children and adults
Previous studies reported that sex and age could influence urine metabolomics, which should be considered in biomarker discovery. As a consequence, for the baseline of urine metabolomics characteristics, it becomes critical to avoid confounding effects in clinical cohort studies. In this study, we provided a comprehensive lifespan characterization of urine metabolomics in a cohort of 348 healthy children and 315 adults, aged 1 to 78 years, using liquid chromatography coupled with high resolution mass spectrometry. Our results suggest that sex-dependent urine metabolites are much greater in adults than in children. The pantothenate and CoA biosynthesis and alanine metabolism pathways were enriched in early life. Androgen and estrogen metabolism showed high activity during adolescence and youth stages. Pyrimidine metabolism was enriched in the geriatric stage. Based on the above analysis, metabolomic characteristics of each age stage were provided. This work could help us understand the baseline of urine metabolism characteristics and contribute to further studies of clinical disease biomarker discovery
Regulatory capacity building and the governance of clinical stem cell research in China
While other works have explained difficulties in applying ‘international’ guidelines in the field of regenerative medicine in so-called low- and middle-income countries (LMICs) in terms of ‘international hegemony’, ‘political and ethical governance’ and ‘cosmopolitisation’, this article on stem cell regulation in China emphasises the particular complexities faced by large LMICs: the emergence of alternative regulatory arrangements made by stakeholders at a provincial level at home. On the basis of ethnographic and archival research of clinical stem cell research hubs, we have characterized six types of entrepreneurial ‘bionetworks’, each of which embodies a regulatory orientation that developed in interaction with China’s regulatory dilemmas. Rather than adopting guidelines from other countries, we argue that regulatory capacity building is more appropriately viewed as a relational concept, referring to the ability to develop regulatory requirements that can cater for different regulatory research needs on an international level and at home
- …