128 research outputs found

    Individualized analysis reveals CpG sites with methylation aberrations in almost all lung adenocarcinoma tissues

    Get PDF
    Additional file 1: Table S1. Stable and reversal CpG site pairs identified in the samples measured by two platforms

    Giant thermally-enhanced electrostriction and polar surface phase in La2Mo2O9 oxygen ion conductors

    Get PDF
    Ferroelectrics possess spontaneous electric polarization at macroscopic scales which nonetheless imposes strict limitations on the material classes. Recent discoveries of untraditional symmetry-breaking phenomena in reduced material dimensions have indicated feasibilities to extend polar properties to broader types of materials, potentially opening up the freedom for designing materials with hybrid functionalities. Here, we report the unusual electromechanical properties of La2Mo2O9 (LAMOX) oxygen ion conductors, systematically investigated at both bulk and surface length levels. We first observed giant electrostriction effects in La2Mo2O9 bulk ceramics that are thermally enhanced in concert with their low-energy oxygen-vacancy hopping dynamics. Moreover, while no clear bulk polarization was detected, the surface phases of LAMOX were found to be manifestly polar, likely originating from the coupling between the intrinsic structural flexibilities with strain gradients (i.e., flexoelectricity) and/or chemical heterogeneities present in the materials. These findings identify La2Mo2O9 as a promising electromechanical material system and suggest that the flexible structural and chemical configurations in ionically active materials could enable fundamentally different venues to accommodate electric polarization.Q.L. and H.W. were supported by the US Department of Energy, Office of Science, Materials Science and Engineering Division. T.L. and Y.L. acknowledge the support of the Australian Research Council (ARC) in the form of Discovery Projects (DP160104780). N.L. was supported by the Eugene P. Wigner Fellowship program at ORNL (No. DE-AC05-00OR22725). The PFM experiments were performed at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility at Oak Ridge National Laboratory (ORNL). The use of Advanced Photon Source was supported by the US DOE, Basic Energy Science under Contract No. DE-AC02-06CH11357

    A kognitív készségek rendszere és fejlődése

    Get PDF
    Additional file 7: Figure S1. The KEGG pathways separately enriched with hypermethylated (a) and hypomethylated (b) genes in at least 10% of the 539 TCGA lung adenocarcinoma samples

    Giant thermally-enhanced electrostriction and polar surface phase in La2Mo2O9 oxygen ion conductors

    Get PDF
    Ferroelectrics possess spontaneous electric polarization at macroscopic scales which nonetheless imposes strict limitations on the material classes. Recent discoveries of untraditional symmetry-breaking phenomena in reduced material dimensions have indicated feasibilities to extend polar properties to broader types of materials, potentially opening up the freedom for designing materials with hybrid functionalities. Here, we report the unusual electromechanical properties of La2Mo2O9 (LAMOX) oxygen ion conductors, systematically investigated at both bulk and surface length levels. We first observed giant electrostriction effects in La2Mo2O9 bulk ceramics that are thermally enhanced in concert with their low-energy oxygen-vacancy hopping dynamics. Moreover, while no clear bulk polarization was detected, the surface phases of LAMOX were found to be manifestly polar, likely originating from the coupling between the intrinsic structural flexibilities with strain gradients (i.e., flexoelectricity) and/or chemical heterogeneities present in the materials. These findings identify La2Mo2O9 as a promising electromechanical material system and suggest that the flexible structural and chemical configurations in ionically active materials could enable fundamentally different venues to accommodate electric polarization

    LC–MS-Based Urine Metabolomics Analysis for the Diagnosis and Monitoring of Medulloblastoma

    Get PDF
    Medulloblastoma (MB) is the most common type of brain cancer in pediatric patients. Body fluid biomarkers will be helpful for clinical diagnosis and treatment. In this study, liquid chromatography–mass spectrometry (LC–MS)-based metabolomics was used to identify specific urine metabolites of MB in a cohort, including 118 healthy controls, 111 MB patients, 31 patients with malignant brain cancer, 51 patients with benign brain disease, 29 MB patients 1 week postsurgery and 80 MB patients 1 month postsurgery. The results showed an apparent separation for MB vs. healthy controls, MB vs. benign brain diseases, and MB vs. other malignant brain tumors, with AUCs values of 0.947/0.906, 0.900/0.873, and 0.842/0.885, respectively, in the discovery/validation group. Among all differentially identified metabolites, 4 metabolites (tetrahydrocortisone, cortolone, urothion and 20-oxo-leukotriene E4) were specific to MB. The analysis of these 4 metabolites in pre- and postoperative MB urine samples showed that their levels returned to a healthy state after the operation (especially after one month), showing the potential specificity of these metabolites for MB. Finally, the combination of two metabolites, tetrahydrocortisone and cortolone, showed diagnostic accuracy for distinguishing MB from non-MB, with an AUC value of 0.851. Our data showed that urine metabolomics might be used for MB diagnosis and monitoring

    Contrasting Phylogeographic Patterns in Lumnitzera Mangroves Across the Indo-West Pacific

    Get PDF
    Mangroves are ecologically important forest communities in tropical and subtropical coasts, the effective management of which requires understanding of their phylogeographic patterns. However, these patterns often vary among different species, even among ecologically similar taxa or congeneric species. Here, we investigated the levels and patterns of genetic variation within Lumnitzera consisting of two species (L. racemosa and L. littorea) with nearly sympatric ranges across the Indo-West Pacific (IWP) region by sequencing three chloroplast DNA regions (for both species) and genotyping 11 nuclear microsatellite loci (for L. littorea). Consistent with findings in studies on other mangrove species, we found that both L. racemosa and L. littorea showed relatively high genetic variation among populations but low genetic variation within populations. Haplotype network and genetic clustering analyses indicated two well-differentiated clades in both L. racemosa and L. littorea. The relationship between geographic and genetic distances and divergence time estimates of the haplotypes indicated that limited dispersal ability of the propagules, emergence of land barriers during ancient sea-level changes, and contemporary oceanic circulation pattern in the IWP influenced the current population structure of the two species. However, the position of genetic break was found to vary between the two species: in L. racemosa, strong divergence was observed between populations from the Indian Ocean and the Pacific Ocean possibly due to land barrier effect of the Malay Peninsula; in L. littorea, the phylogeographic pattern was created by a more eastward genetic break along the biogeographic barrier identified as the Huxley’s line. Overall, our findings strongly supported previous hypothesis of mangrove species divergence and revealed that the two Lumnitzera species have different phylogeographic patterns despite their close genetic relationship and similar current geographic distribution. The findings also provided references for the management of Lumnitzera mangroves, especially for the threatened L. littorea

    Analisis Portofolio Optimal Dengan Single Index Model Untuk Meminimumkan Risiko Bagi Investor Di Bursa Efek Indonesia (Studi Pada Saham Indeks Kompas 100 Periode Februari 2010-juli 2014)

    Full text link
    Investments can be made in the capital market, capital market instruments which are mostly attractive for investors is stock. Stock provides a return in the form of capital gains and dividends yield, not only noticing the return, investors need to pay attention to the investments risk. Unsystematis risk can be minimized by forming the optimal portfolio using one of the methods that is single index model. Study purpose is to knowing the stocks forming the optimal portfolio, the proportion of funds allocated to each stocks, the level of expectation return and risk.The method used in this research is descriptive research method with a quantitative approach. The samples used were 46 stocks in Kompas 100 Index, which meets the criteria for sampling. The results showed that 12 stocks of forming optimal portfolio, the stocks of which are UNVR, TRAM, MNCN, BHIT, JSMR, BMTR, GJTL, KLBF, AALI, CPIN, AKRA, and ASRI. Stock with highest proportion of funds is TRAM (23,52%), stock with lowest proportion of funds is AALI (0,62%). Portfolio which are formed will give return expectations by 3,05477% and carry the risk for about 0,1228%

    Characterization of LC-MS based urine metabolomics in healthy children and adults

    Get PDF
    Previous studies reported that sex and age could influence urine metabolomics, which should be considered in biomarker discovery. As a consequence, for the baseline of urine metabolomics characteristics, it becomes critical to avoid confounding effects in clinical cohort studies. In this study, we provided a comprehensive lifespan characterization of urine metabolomics in a cohort of 348 healthy children and 315 adults, aged 1 to 78 years, using liquid chromatography coupled with high resolution mass spectrometry. Our results suggest that sex-dependent urine metabolites are much greater in adults than in children. The pantothenate and CoA biosynthesis and alanine metabolism pathways were enriched in early life. Androgen and estrogen metabolism showed high activity during adolescence and youth stages. Pyrimidine metabolism was enriched in the geriatric stage. Based on the above analysis, metabolomic characteristics of each age stage were provided. This work could help us understand the baseline of urine metabolism characteristics and contribute to further studies of clinical disease biomarker discovery

    EBV-Encoded LMP1 Upregulates Igκ 3′Enhancer Activity and Igκ Expression in Nasopharyngeal Cancer Cells by Activating the Ets-1 through ERKs Signaling

    Get PDF
    Accumulating evidence indicates that epithelial cancer cells, including nasopharyngeal carcinoma (NPC) cells, express immunoglobulins (Igs). We previously found that the expression of the kappa light chain protein in NPC cells can be upregulated by the EBV-encoded latent membrane protein 1 (LMP1). In the present study, we used NPC cell lines as models and found that LMP1-augmented kappa production corresponds with elevations in ERKs phosphorylation. PD98059 attenuates LMP1-induced ERKs phosphorylation resulting in decreased expression of the kappa light chain. ERK-specific small interfering RNA blunts LMP1-induced kappa light chain gene expression. Luciferase reporter assays demonstrate that immunoglobulin κ 3′ enhancer (3′Eκ) is active in Igκ-expressing NPC cells and LMP1 upregulates the activity of 3′Eκ in NPC cells. Moreover, mutation analysis of the PU binding site in 3′Eκ and inhibition of the MEK/ERKs pathway by PD98059 indicate that the PU site is functional and LMP1-enhanced 3′Eκ activity is partly regulated by this site. PD98059 treatment also leads to a concentration-dependent inhibition of LMP1-induced Ets-1 expression and phosphorylation, which corresponds with a dose-dependent attenuation of LMP1-induced ERK phosphorylation and kappa light chain expression. Suppression of endogenous Ets-1 by small interfering RNA is accompanied by a decrease of Ig kappa light chain expression. Gel shift assays using nuclear extracts of NPC cells indicate that the transcription factor Ets-1 is recruited by LMP1 to the PU motif within 3′Eκ in vitro. ChIP assays further demonstrate Ets-1 binding to the PU motif of 3′Eκ in cells. These results suggest that LMP1 upregulates 3′Eκ activity and kappa gene expression by activating the Ets-1 transcription factor through the ERKs signaling pathway. Our studies provide evidence for a novel regulatory mechanism of kappa expression, by which virus-encoded proteins activate the kappa 3′ enhancer through activating transcription factors in non-B epithelial cancer cells
    • …
    corecore