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Individualized analysis reveals CpG sites 
with methylation aberrations in almost all lung 
adenocarcinoma tissues
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Abstract 

Background:  Due to the heterogeneity of cancer, identifying differentially methylated (DM) CpG sites between a 
set of cancer samples and a set of normal samples cannot tell us which patients have methylation aberrations in a 
particular DM CpG site.

Methods:  We firstly showed that the relative methylation-level orderings (RMOs) of CpG sites within individual nor-
mal lung tissues are highly stable but widely disrupted in lung adenocarcinoma tissues. This finding provides the basis 
of using the RankComp algorithm, previously developed for differential gene expression analysis at the individual 
level, to identify DM CpG sites in each cancer tissue compared with its own normal state. Briefly, through compar-
ing with the highly stable normal RMOs predetermined in a large collection of samples for normal lung tissues, the 
algorithm finds those CpG sites whose hyper- or hypo-methylations may lead to the disrupted RMOs of CpG site pairs 
within a disease sample based on Fisher’s exact test.

Results:  Evaluated in 59 lung adenocarcinoma tissues with paired adjacent normal tissues, RankComp reached an 
average precision of 94.26% for individual-level DM CpG sites. Then, after identifying DM CpG sites in each of the 539 
lung adenocarcinoma samples from TCGA, we found five and 44 CpG sites hypermethylated and hypomethylated 
in above 90% of the disease samples, respectively. These findings were validated in 140 publicly available and eight 
additionally measured paired cancer-normal samples. Gene expression analysis revealed that four of the five genes, 
HOXA9, TAL1, ATP8A2, ENG and SPARCL1, each harboring one of the five frequently hypermethylated CpG sites within 
its promoters, were also frequently down-regulated in lung adenocarcinoma.

Conclusions:  The common DNA methylation aberrations in lung adenocarcinoma tissues may be important for lung 
adenocarcinoma diagnosis and therapy.

Keywords:  Lung adenocarcinoma, DNA methylation, Relative methylation level orderings, Differentially methylated 
CpG sites
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Background
The incidence of lung adenocarcinoma is increas-
ing worldwide. It is widely recognized that lung 

adenocarcinoma, like other cancers, has different molec-
ular subtypes with different prognoses [1, 2]. In cancer 
genomes, the frequencies of somatic mutations and copy 
number variations are usually very low [3, 4], forming a 
major barrier for cancer diagnosis and therapy. On the 
other hand, it is also well known that cancers are com-
monly characterized with cancer hallmarks [5, 6], and 
tremendous efforts have been made to identify com-
mon biomarkers at the level of pathways or gene mod-
ules. Especially, mutually exclusive analyses of somatic 
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mutation and/or copy number variation have been tried 
to identify some driver genes that could jointly explain a 
large fraction samples of a cancer type to provide poten-
tial targets of medicine [7, 8]. However, a set of mutually 
exclusive genes or gene modules as a cancer diagnosis 
and therapy maker might be difficult for clinical appli-
cations. In contrast to genomic aberrations, DNA meth-
ylation aberrations are widespread in cancer genomes. 
Therefore, it would be interesting to analyze whether 
there are epigenomic aberrations appearing in almost all 
patients of a cancer such as lung adenocarcinoma.

Currently, genome-wide DNA methylation profiles are 
widely applied to identify population-level differentially 
methylated (DM) CpG sites in cancer tissues compared 
with normal controls using various statistical methods such 
as the Shannon entropy based method QDMR [9], empiri-
cal Bayes model DiffVar [10] and T test [11]. However, the 
inter-individual heterogeneity of DM CpG sites was ignored 
in these approaches. Thus a novel computational tool is 
needed to detect which patients have methylation aberra-
tions in a particular CpG site. To tackle this difficulty, some 
previous works discretized DNA methylation states of CpG 
sites in a cancer sample through comparing with the average 
methylation level in a set of normal samples [12, 13]. How-
ever, because the DNA methylation levels of CpG sites vary 
across individuals in a healthy population, this approach 
may easily be affected by biological variations.

Recently, we have reported an interesting biological 
phenomenon that the within-sample relative expres-
sion orderings of genes within a particular type of nor-
mal tissues are highly stable but widely disrupted in the 
corresponding cancer tissues [14]. Based on this finding, 
we have developed an algorithm, named RankComp, to 
identify genes differentially expressed in each individual 
cancer tissue sample by finding those genes whose up- 
or down-regulations may lead to the disrupted relative 
expression orderings of genes within this disease sam-
ple in comparison with the stable normal background 
[14]. Importantly, the stable normal background of the 
relative expression orderings of genes within a particular 
type of normal tissues can be predetermined in accumu-
lated normal samples previously measured by different 
laboratories [14]. Thus, it would be of interest to evalu-
ate whether the within-sample relative methylation-level 
orderings (RMOs) of CpG sites are also highly stable in a 
particular type of normal tissues but widely disrupted in 
the corresponding cancer tissues. If this biological phe-
nomenon does exist, then it would be possible to apply 
the RankComp algorithm to detect DM CpG sites for 
each cancer tissue compared with its own previously 
(usually unknown) normal status.

In this study, through the analysis of multiple methyla-
tion datasets for normal lung tissues, we firstly revealed an 

interesting biological phenomenon that the RMOs of CpG 
sites within different samples of normal lung tissues are 
highly stable but widely reversed in the cancer tissues. Based 
on this finding, we showed that the RankComp algorithm 
can accurately detect DM CpG sites in individual cancer 
samples from DNA methylation data for cancer samples 
alone. Then, RankComp was applied to identify DM CpG 
sites for each of the 539 lung adenocarcinoma samples from 
The Cancer Genome Atlas (TCGA). Many CpG sites with 
methylation aberrations in above 90% of lung adenocarci-
noma tissues were found and validated in 140 publicly avail-
able and eight additionally measured paired cancer-normal 
samples. Gene expression analysis revealed that four of the 
five genes, HOXA9, TAL1, ATP8A2, ENG and SPARCL1, 
each harboring one of the five frequently hypermethylated 
CpG sites within its promoters, were also frequently down-
regulated in lung adenocarcinoma.

Methods
Data and preprocessing
DNA methylation profiles for lung tissues were collected 
from the Gene Expression Omnibus (GEO) [15] database 
and The Cancer Genome Atlas data portal (http://tcga-
data.nci.nih.gov/tcga/). We used a dataset (GSE32861) of 
DNA methylation profiles for paired cancer and adjacent 
normal samples to evaluate the performance of Rank-
Comp (Table  1). Except the paired cancer-normal data-
sets, the other DNA methylation profiles described in 
Table 1 were used to evaluate the RMOs of CpG sites in 
normal and cancer tissues. The DNA methylation profiles 
of 539 samples of lung adenocarcinoma were selected 
from TCGA for application analysis.

The DNA methylation data was measured with Illu-
mina Human Methylation 27 Beadchip (27K array) and 
Illumina Human Methylation 450 Beadchip (450K array). 
We focused on analyzing the 25,978 CpG sites measured 
by both 27 and 450K arrays. Using methylated signal 
intensity (M) and unmethylated signal intensity (U), the 

Table 1  The DNA methylation profiles analyzed in  this 
study

a  Represents the paired cancer-normal samples used to evaluate the 
performance of Rankcomp

Dataset Normal Tumor Platform

GSE62948 28 28 27K

GSE32866 27 28 27K

GSE52401 244 – 450K

TCGA 24 109 27K

TCGA 32 430 450K

GSE32861a 59 59 27K

http://tcga-data.nci.nih.gov/tcga/
http://tcga-data.nci.nih.gov/tcga/
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DNA methylation level of each probe was calculated by 
M/(U +  M +  100) [16]. The probes were annotated to 
genes according to the annotation table of 27K platform.

KEGG pathways
Data of 234 pathways covering 5981 unique genes was 
downloaded from the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) (Release 58.0) [17] for pathway enrich-
ment analysis.

Reproducibility analysis of the stable RMOs of CpG sites 
in normal tissues
The RMO of two CpG sites, A and B, was denoted as 
A > B or A < B if the site A had a higher or lower meth-
ylation level than the site B. The RMO of two CpG sites 
was defined as stable in normal tissues if the same RMO 
existed in at least 99% of the samples, allowing 1% detec-
tion error rate.

For a particular type of normal tissues, we respectively 
detected two lists of stable CpG site pairs in two inde-
pendent datasets to evaluate the reproducibility of the 
stable CpG site pairs. The concordance score of the two 
lists of stable CpG site pairs was calculated as s/k. k was 
the number of the stable CpG site pairs shared by the two 
lists, among which s pairs had the same RMO patterns 
(A > B or A < B) in the two lists. The probability of a con-
cordance score s/k observed by chance was calculated 
according to the cumulative binomial distribution model 
[18].

where Pe (Pe =  0.5) is the probability of a pair of CpG 
sites having the same RMO in two lists by chance.

Reproducibility analysis of the reversal RMOs of CpG sites 
in cancer tissues
For stable RMOs in normal samples, we applied Fisher’s 
exact test to detect gene pairs with significantly higher 
frequencies of reversal RMOs in cancer samples than 
what expected by random chance using two independent 
datasets, respectively, defined as reversal CpG site pairs. 
The p-values were adjusted using the Benjamini–Hoch-
berg procedure [19]. The concordance of two lists of 
reversal CpG site pairs identified from two independent 
datasets was also evaluated by the cumulative binomial 
distribution model as described above.

The RankComp algorithm for individualized differential 
methylation analysis
Then, we used RankComp to identify differentially meth-
ylated CpG sites in a given cancer sample in comparison 
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)
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with its previously normal state, based on the highly sta-
ble CpG site pairs with consistent RMOs in at least 99% 
of previously accumulated normal samples measured 
by different laboratories. The detail of the RankComp 
algorithm was described in Wang et  al. [14]. Briefly, for 
each cancer sample, CpG site pairs with reversal order-
ing in comparison with their stable ordering in nor-
mal samples were determined as reversal CpG site 
pairs by RankComp. Then, the Fisher’s exact test was 
used to determine whether a CpG site Ci was differen-
tially methylated in a given cancer sample by testing the 
null hypothesis that the proportion of reversal CpG site 
pairs supporting the hypermethylation of Ci was equal 
to the proportion of reversal CpG site pairs supporting 
the hypomethylation of Ci. For a given CpG site Ci, if its 
ordering was stably lower (or higher) than that of CpG 
site Cj in normal samples but this ordering was reversed 
in a cancer sample, then this reversal CpG site pair could 
support hypermethylation (or hypomethylation) of Ci 
in this sample. If Ci itself is not changed in methylation 
level, the effect of the methylation changes of other CpG 
sites on the upward or downward shift in the rank of Ci is 
assumed to be a random event.

Performance evaluation of RankComp
Methylation profiles for paired cancer and adjacent nor-
mal tissues were downloaded from TCGA and GEO 
to evaluate the performance of RankComp. We used 
RankComp to detect DM CpG sites in individual can-
cer samples using DNA methylation data on cancer 
samples alone. After identifying DM CpG sites for each 
cancer sample, we evaluated the precision of DM CpG 
sites identified for this cancer sample using the observed 
methylation level differences (hyper- or hypomethyla-
tion) between the cancer sample and its paired adjacent 
normal sample as the golden standard. The underlying 
assumption of this evaluation is that the previously nor-
mal state of a cancer tissue could be approximately repre-
sented by the adjacent normal tissue of the cancer tissue. 
For a cancer sample, if the aberration states of DM CpG 
sites identified by RankComp are consistent with the 
golden standard, then they are defined as true positives 
(TP); otherwise, false positives (FP). The precision is cal-
culated as positive predictive value: TP/(TP + FP).

To ensure the association between the individualized 
CpG sites and cancer, the precision analysis for each can-
cer sample was restricted to the CpG sites that were found 
to be differentially methylated at the population-level. 
Thus, we applied T-test to detect population-level DM 
CpG sites between cancer samples and normal samples 
using two independent datasets for each cancer, respec-
tively. The Benjamini–Hochberg procedure was used to 
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control the false discovery rate (FDR). The concordance 
score between the two lists of DM CpG sites and its statis-
tical significance were calculated by the same method as 
described above. We defined the DM CpG sites that were 
consistently detected from the two independent datasets 
as the population-level DM CpG sites for each cancer.

DNA methylation and gene expression profiling
Eight paired samples of lung adenocarcinoma tissues and 
adjacent normal tissues were used for DNA methyla-
tion and gene expression detection. Fresh frozen cancer 
tissue samples were obtained from surgically removed 
lung specimens. Tumor samples were macro dissected 
to ensure the purity of the tumor. From the same patient, 
adjacent normal tissue samples were collected from 
resected, located approximately 3.5–5 cm away from the 
tumor site. All samples were collected from the operat-
ing room immediately after surgical resection. Samples 
were fresh frozen and were shipped on ice for subsequent 
DNA extraction and RNA extraction. This study was 
approved by the institutional review boards of all par-
ticipating institutions, and written consent forms were 
obtained from all participants.

DNA was extracted from frozen tissue samples using 
the Qiagen® Genomic DNA Mini Kit, as described by the 
manufacturer. DNA quantification was performed using 
a NanoDrop 2000 UV–Vis Spectrophotometer (Thermo). 
The bisulfite conversion of DNA was conducted using 
the Zymo bisulfite gold kit. The Infinium Methylation 
450K assay was performed according to Illumina’s stand-
ard protocol. Processed methylation chips were scanned 
using an iScan reader (Illumina). All samples were pro-
cessed at the same time to avoid chip-to-chip varia-
tion. Infinium Methylation data were processed using 
the Methylation Module of the GenomeStudio software 
package (v. 2011.1). For quality control, methylation 
measures with a detection p-value >0.05 were removed. 
The data was initially normalized using internal controls 
in the GenomeStudio software and has been submitted to 
GEO (GSE85845).

Total RNA was extracted using Trizol reagent (Invitro-
gen) according to the manufacture’s protocol. The purity 
and concentration of RNA was determined by Nano Drop 
ND-1000 spectrophotometer according to OD260/280 
reading. Each time point has three replicates. Total RNAs 
were hybridized using mRNA +  lncRNA Human Gene 
Expression Microarray V4.0 (4 ×  180K format, Capital-
Bio Corp, Beijing, China), which contains probes inter-
rogating about 34,235 human mRNAs assembled from 
databases such as UCSC [20], RefSeq [21] and Ensembl 
[22]. The gene expression profiles have been submitted to 
GEO (GSE85841).

Results
Highly stable RMOs of CpG sites in normal lung tissues are 
widely disrupted in cancer tissues
We collected a total of 355 samples for normal lung tis-
sues, including 79 samples derived from three datasets 
assayed by the 27K array and 276 samples derived from 
two datasets assayed by the 450K array (Table  1). Here, 
we only analyzed the CpG sites assayed by both the 27 
and 450K arrays.

We defined two CpG sites as a stable CpG site pair 
if the two CpG sites had identical RMO in at least 99% 
of the normal lung tissue samples. Accordingly, a list 
of 229,037,151 stable CpG site pairs was identified in 
the 79 normal lung tissue samples assayed by the 27K 
array, and a shorter list of 173,949,484 stable CpG site 
pairs was identified in the 276 normal lung tissue sam-
ples assayed by the 450K array (Additional file  1: Table 
S1). Notably, 90.62% of the stable CpG site pairs in the 
shorter list were included in the longer list and 99.75% 
of the overlapped CpG site pairs had the same RMOs 
in the two sets of the normal lung tissue samples (bino-
mial test, p  <  2.2  ×  10–16). The stable CpG site pairs 
involved all the measured CpG sites. These results sug-
gest that the highly stable within-sample RMOs of 
CpG sites in normal lung tissues can be reproducibly 
detected across samples measured with different plat-
forms. As exemplified in Fig.  1a, although the DNA 
methylation levels of cg15778232, cg26521404 and 
cg03606258 CpG sites varied greatly across different 
normal samples in the GSE32866 dataset, their RMOs 
(cg15778232  >  cg26521404, cg26521404  <  cg03606258 
and cg15778232 < cg03606258) were highly stable across 
the normal samples.

Among the CpG site pairs with stable RMOs in nor-
mal lung tissue, we found 8,615,527 and 37,815,005 CpG 
site pairs with significantly frequent reversal RMOs in 
the 165 and 430 lung cancer samples assayed by the 27K 
array and 450K array (Table 1) (FDR < 0.05, Fisher’s exact 
test), respectively. As exemplified in Fig. 1b, the RMO of 
cg15778232 and cg26521404 was widely reversed in the 
lung cancer samples (GSE32866), caused by the methyla-
tion level increase of cg26521404. The reversal CpG site 
pairs involved all the measured CpG sites and averagely 
a CpG site participated in more than four thousands of 
reversal CpG site pairs. These results suggest that the 
landscape of stable CpG site pairs in normal lung tissues 
is widely disrupted in lung cancer tissues.

Performance evaluation of RankComp
Here, we firstly determined DM CpG sites associated 
with lung cancer at the population-level. From two inde-
pendent datasets, GSE62948 and GSE32866, 6,515 and 
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5,451 DM CpG sites in lung cancer were detected (T-test, 
FDR  <  0.05) (Additional file  2: Table S2). The two lists 
of DM CpG sites had 4,159 overlaps and all of them had 
the same hypermethylation or hypomethylation states in 
the two datasets with the concordance score being 100% 
(binomial test, p < 2.2 × 10–16). These 4159 reproducible 
DM CpG sites were defined as the population-level DM 
CpG sites for lung cancer.

Then, we used an independent dataset, GSE32861 
with 59 paired cancer-normal lung samples, to evalu-
ate the performance of RankComp in individualizing the 
above defined population-level DM CpG sites. Here, we 
detected DM CpG sites for each disease sample with-
out using any of the methylation data of its paired adja-
cent normal sample. The paired adjacent normal sample 
of a disease sample was used for performance evaluation 
only: the observed methylation level differences of the 
DM CpG sites between the cancer sample and its adjacent 
normal sample were taken as the golden standard. Based 
on the predetermined stable CpG site pairs in the accu-
mulated 355 normal lung tissue samples, with FDR < 0.01, 
averagely 2777 DM CpG sites per disease sample were 
identified and the average of the precisions of all sam-
ples was 94.26%. However, as shown in Fig. 2, the preci-
sion for a sample (GSM813269) was only 70.89%, which 
may be caused by the quality of its paired normal tissue. 
In fact, the Spearman’s correlation coefficient between 
the DNA methylation levels of this normal tissue and any 

of the other 58 normal tissues was lower than 0.72, while 
the Spearman’s correlation coefficient was larger than 0.88 
between every two of the other 58 normal tissues.

The above results suggested that RankComp can accu-
rately find DM CpGs in individual lung cancer tissues 
compared with their own previous normal state approx-
imately represented by their paired adjacent normal 
tissues.

The CpG sites with methylation aberrations in above 90% 
lung adenocarcinoma tissues
Then, we used RankComp to identify DM CpG sites 
for each of the 539 lung adenocarcinoma samples from 
TCGA. The results showed that 83.64% of DNA methyla-
tion aberrations appeared in less than 80% of the cancer 
samples, reflecting the heterogeneity nature of cancer. 
Interestingly, we found five and 44 CpG sites that were 
hypermethylated and hypomethylated, respectively, in 
more than 90% of the 539 cancer samples (Additional 
file 3: Table S3). In the following text, we focused on vali-
dating these CpG sites with extremely high frequencies of 
methylation alternations in cancer tissues.

Firstly, we validated these CpG sites using 140 paired 
samples of cancer-normal tissues collected from three 
datasets (GSE32861, TCGA and GSE62948, Additional 
file 4: Table S4). As shown in Table 2, in more than 95% 
of the 140 paired samples, the methylation levels of the 
five CpG sites with high hypermethylation frequencies 

Fig. 1  An example of three CpG sites with pairwise stable RMOs in normal samples (a) and reversal RMOs in cancer samples (b). Four paired cancer-
normal samples from GSE32866 were used to show this biological phenomenon. Red, blue and green points represent cg15778232, cg26521404 
and cg03606258 CpG sites, respectively
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were higher in the cancer tissues than in the corre-
sponding adjacent normal tissues. Similarly, in more 
than 90% of the 140 paired samples, 43 of the 44 hypo-
methylated CpG sites had lower methylation levels in 
the cancer tissues than in the corresponding adjacent 
normal tissues (Additional file 5: Table S5).

To further validate these CpG sites with extremely high 
frequencies of methylation alternations, we measured 
DNA methylation profiles for eight paired cancer-normal 
lung tissues using Illumina Human Methylation 450 Bead-
chip. Four of the five frequently hypermethylated CpG 
sites were hypermethylated in all the eight paired cancer-
normal samples and the left one CpG site was hypermeth-
ylated in seven paired cancer-normal samples (Table  2). 
For the 44 hypomethylated CpG sites with high frequen-
cies, 39 CpG sites were validated in at least seven paired 
cancer-normal samples (Additional file 5: Table S5).

Genes deregulated by the frequently hypermethylated 
CpG sites
Because it is well known that DNA hypomethylation is 
weakly correlated with up-regulation of gene expression 

[23], we focused on analyzing the five hypermethylated 
CpG sites with above 90% frequencies in lung adenocar-
cinoma tissues. We defined a gene as a hypermethylated 
gene in a disease sample if at least one CpG site within its 
promoter region was identified as a hypermethylated and 
no CpG site was identified as hypomethylated. Accord-
ingly, we found five genes (HOXA9, TAL1, ATP8A2, 
ENG and SPARCL1) corresponding to the five CpG sites 
had above 90% hypermethylation frequencies in the 539 
lung adenocarcinoma samples from TCGA.

Then, we investigated the expressions of the five 
genes using 82 paired cancer-normal samples with 
gene expression profiles (GSE32867 and TCGA, Addi-
tional file  6: Table S6). Here, a gene was defined as 
down-regulated in the cancer sample if its expression 
level in the cancer sample was lower than that in the 
corresponding adjacent normal sample. We found that 
SPARCL1, ENG, TAL1, ATP8A2 and HOXA9 were 
down-regulated in 99, 94, 89, 65 and 49% of the 82 
cancer samples (Table  3). Thus, at least three genes, 
SPARCL1, ENG and TAL1, might be frequently and 
strongly silenced by the frequently hypermethylated 
CpG sites within their promoter regions. To further 
validate the results for these three genes, we meas-
ured gene expression profiles for eight paired can-
cer-normal lung tissues using microarray. The gene 
expression levels of SPARCL1 and TAL1 were down-
regulated in all the eight cancer tissues compared 
with their paired adjacent normal tissues, while ENG 
was down-regulated in six of the eight cancer tissues 
(Table 3).

The above results suggested that SPARCL1, ENG and 
TAL1 could be potential tumor suppressors of lung ade-
nocarcinoma and thus could be drug targets or diagnostic 
biomarkers for lung adenocarcinoma. ENG is a candidate 
tumor-suppressor gene of esophageal squamous cell car-
cinoma [24]. It has been found that the silencing of ENG 
by hypermethylation in the promoter region could be 
reactivated by demethylation [25] that can reduce colony 
formation efficiency and suppress invasion efficiency and 

Fig. 2  The precision and the number of DM CpG sites detected by 
RankComp for each of the 59 lung cancer samples from GSE32861

Table 2  The hypermethylation frequencies of  five CpG 
sites in disease samples

For a gene corresponding to a CpG site, Frequency1 and Frequency2 represent 
the hypermethylation frequencies in the 140 publicly available and eight 
additionally measured paired cancer-normal samples, resepectively

CpG site Gene symble Frequency1 (%) Frequency2 (%)

cg05050341 ENG 97.86 100

cg12111714 ATP8A2 97.86 100

cg19466563 SPARCL1 98.57 87.50

cg19797376 TAL1 98.57 100

cg26521404 HOXA9 98.57 100

Table 3  Down-deregulation frequencies of  the five genes 
regulated by  the five frequently hypermethylated CpG 
sites

For a gene corresponding to a CpG site, Frequency1 and Frequency2 represent 
the down-regulation frequencies of the gene in the 82 publicly available and 
eight additionally measured paired cancer-normal samples, resepectively

CpG site Gene symble Frequency1 (%) Frequency2 (%)

cg05050341 ENG 93.90 75.00

cg12111714 ATP8A2 64.63 62.50

cg19466563 SPARCL1 98.78 100

cg19797376 TAL1 89.02 100

cg26521404 HOXA9 48.78 50.00
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tumorigenicity of cancer cells [24]. Thus, the drug tar-
get potential of ENG for lung adenocarcinoma deserves 
further studies. SPARCL1, a known tumor suppressor of 
colon cancer [26], is an anti-adhesive extracellular matrix 
gene with anti-proliferative effects mediated through 
cell–cell adhesion [27, 28]. TAL1 is a member of the basic 
helix-loop-helix family of transcription factors and its 
downregulation could suppress the activity of the tumor 
suppressor TGF-β in the early phase of tumor through 
downregulating KDR expression [29]. Thus, SPARCL1 
and TAL1 might also be important tumor suppressors of 
lung adenocarcinoma and it would be interesting to study 
whether their silencing could be reactivated by demeth-
ylation and whether the reactivation could suppress can-
cer cells.

Discussion
The inter-individual heterogeneity of cancer forms a 
major barrier for cancer diagnosis and therapy. Thus, it 
would be interesting to find common molecular aber-
rations appearing in almost all patients of a cancer 
such as lung adenocarcinoma. In this work, we have 
revealed an interesting biological phenomenon that 
the within-sample RMOs of CpG sites remain highly 
stable in normal lung tissues. This might be an epige-
netic mechanism to keep genes functioning concertedly 
and robustly in the normal lung tissues in the presence 
of various perturbations. Another interesting biologi-
cal phenomenon revealed in this study is that the sta-
ble RMOs in normal tissues are widely disrupted in 
the corresponding cancer tissues, reflecting the nature 
of cancer as a systems disease. These intrinsic biologi-
cal phenomena provide the basis for identifying DM 
CpG sites for an individual cancer sample by exploit-
ing the widely disrupted epigenetic landscape within 
this individual disease sample. In fact, our analyses 
showed that the rank-based RankComp algorithm can 
accurately detect DM CpG sites at the individual-level, 
providing us a novel tool to dissect the inter-individual 
heterogeneity of cancer patients. Then, through the 
individual-level analysis of DM CpG sites in 539 lung 
adenocarcinoma samples, we found five and 44 CpG 
sites hypermethylated and hypomethylated in above 
90% of the disease samples, respectively. These find-
ings were further validated in 140 publicly available 
and eight additionally measured paired cancer-normal 
samples. These common DNA methylation aberrations 
found in lung adenocarcinoma tissues may be impor-
tant for lung adenocarcinoma diagnosis and therapy. 
Especially, we found three genes (SPARCL1, ENG and 
TAL1) harboring frequently hypermethylated CpG sites 
within their promoters were also frequently down-reg-
ulated in lung adenocarcinoma. The results suggested 

that these genes might function as tumor suppressors 
and thus might be drug targets or diagnostic biomark-
ers of lung adenocarcinoma.

In addition, after identifying DM genes for a dis-
ease sample, we could detect pathways significantly 
enriched with hypermethylated and hypomethylated 
genes respectively for this disease sample. The appli-
cation of the individual-level pathway analysis to 539 
samples of lung adenocarcinoma revealed that the neu-
roactive ligand-receptor interaction pathway, known to 
be involved in cancer development [30, 31], was signif-
icant in 96.48% of the 539 samples, while the calcium 
signaling pathway, also known to be involved in cancer 
[32–34], was significant in 88.87% of the 539 samples 
(FDR  <  0.05, Additional file  7: Figure S1). Therefore, 
these pathways significantly enriched with DM genes 
in almost all adenocarcinoma tissues deserve our future 
investigation.

Notably, the majority of the DNA methylation aber-
rations are not universally appearing in patients of lung 
adenocarcinoma. For example, 83.64% of the CpG sites 
with DNA methylation aberrations appeared in less than 
80% of all the 539 lung adenocarcinoma tissues from 
TCGA, reflecting the heterogeneity nature of lung adeno-
carcinoma. Some of these methylation aberrations might 
be cancer subtype specific and associated with distinct 
clinical outcomes. As a case study, we identified poten-
tial methylation aberration signatures correlated with 
the prognosis of stage I lung adenocarcinoma patients 
after surgical resection using all the 120 TCGA samples 
of stage I lung adenocarcinoma patients with surgical 
resection. For each CpG site, we classified the patients 
into two groups according to whether they had or had 
not the methylation aberration of this CpG site and then 
compared their relapse-free survival times after surgical 
resection (FDR  <  0.1, univariate Cox model). Finally, we 
found seven genes (ALX4, PDLIM1, FST, EDIL3, ITPKB, 
APC and UCN) that were significantly associated with 
the prognosis of patients. For instance, we found that 
APC was hypermethylated in 50% of the 120 patients and 
these patients had significantly shorter relapse-free sur-
vival time (p  <  0.0014, univariate Cox model) than the 
other patients without APC hypermethylation. This result 
supported a previous report that hypermethylation of 
APC could be associated with poor prognosis of NSCLC 
including lung adenocarcinoma [35]. Moreover, ALX4 
[36], PDLIM1 [37], CAP2 [38] and EDIL3 [39] have also 
been found to be correlated with the prognosis of can-
cer. Thus, the ability of these methylation aberrations for 
predicting the prognosis of stage I lung adenocarcinoma 
patients after surgical resection deserves future studies.

In this paper, we only analyzed the CpG sites within 
gene promoter regions, assayed by both the 27K and 
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450K arrays, but were unable to analyze the huge num-
ber of CpG sites located within gene bodies or inter-
genic regions due to the extensive computational 
burden. Thus, an optimized algorithm needs to be 
developed so that the genome-wide CpG sites assayed 
by 450K or whole-genome bisulfite sequencing could 
be taken into account. In addition, in order to extend 
the application scope of the RankComp algorithm, it is 
necessary to further evaluate the cross-platform prop-
erties of RMOs in samples measured by other plat-
forms such as the whole-genome bisulfite sequencing 
platform.

In summary, the individual-level analysis of DM CpG 
sites can help us identifying universal or subtype-spe-
cific DNA methylation biomarker for cancer prevention, 
treatment and diagnosis [40, 41].

Conclusions
Using multiple DNA methylation datasets for normal 
lung tissues, we firstly revealed that the RMOs of CpG 
sites within different samples of normal lung tissues are 
highly stable but widely reversed in the correspond-
ing cancer tissues. This biological phenomenon allows 
us to exploit the within-sample RMOs of CpG sites to 
accurately detect individual-level DM CpG sites using 
RankComp. Additionally, we used RankComp to identify 
DM CpG sites for each of the 539 lung adenocarcinoma 
samples from TCGA and identified many common DNA 
methylation aberrations in lung adenocarcinoma tissues, 
which were validated by paired cancer-normal samples. 
Using gene expression analysis, we further identified 
abnormal expression genes among genes with common 
DNA methylation aberrations. These common genes 
might be used as candidate biomarkers for lung adeno-
carcinoma diagnosis and therapy.
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