18 research outputs found

    Evaluation of effects caused by differentially spliced Ets-1 transcripts in fibroblasts

    Get PDF
    The transcription factor Ets-1 is known to be involved in a broad variety of cellular functions such as cell proliferation, migration, invasion, apoptosis and angiogenesis. In nearly all these reports, the full-length Ets-1 (p51) is commonly considered to be the active form and the role of the Ets-1?VII splice variant (p42) has not been addressed. Therefore, we studied the functional effects of p42 Ets-1 in comparison to p51 Ets-1 expression in a well-characterized mouse fibroblast cell line. Furthermore, the specific role of Ets-1 was evaluated using mouse fibroblasts with a reduced Ets-1 expression caused by RNAi and compared to fibroblasts with a binding inhibition of the whole ETS transcription factor family by stably overexpressing the ETS DNA binding domain as transdominant-negative mutant. Our results demonstrate that p42 Ets-1 has quite different functions and target genes compared to p51 Ets-1 (e.g. TIMP-4, MMP-3, MMP-9, MMP-13). In some cases (e.g. in cytokine expression) p42 Ets-1 is a functional transcription factor which acts in the same manner as a transdominant-negative approach

    Novel tempeh (fermented soyabean) isoflavones inhibit in vivo angiogenesis in the chicken chorioallantoic membrane assay

    Get PDF
    Anti-angiogenic strategies are emerging as an important tool for the treatment of cancer and inflammatory diseases. In the present investigation we isolated several isoflavones from a tempeh (fermented soyabean) extract. The isolated isoflavones were identified as 5,7,4′-trihydroxyisoflavone (genistein), 7,4′-dihydroxyisoflavone (daidzein), 6,7,4′-trihydroxyisoflavone (factor 2), 7,8,4′-trihydroxyisoflavone (7,8,4′-TriOH) and 5,7,3′,4′-tetrahydroxyisoflavone (orobol). The effects on angiogenesis of these isoflavones were evaluated in the chicken chorioallantoic membrane assay; their capacity to inhibit vascular endothelial growth factor-induced endothelial cell proliferation and expression of the Ets 1 transcription factor, known to be implicated in the regulation of new blood vessel formation, were also investigated. We found that all isoflavones inhibited angiogenesis, albeit with different potencies. Compared with negative controls, which slightly inhibited in vivo angiogenesis by 6·30 %, genistein reduced angiogensis by 75·09 %, followed by orobol (67·96 %), factor 2 (56·77 %), daidzein (48·98 %) and 7,8,4′-TriOH (24·42 %). These compounds also inhibited endothelial cell proliferation, with orobol causing the greatest inhibition at lower concentrations. The isoflavones also inhibited Ets 1 expression, providing some insight into the molecular mechanisms of their action. Furthermore, the chemical structure of the different isoflavones suggests a structure-activity relationship. Our present findings suggest that the new isoflavones might be added to the list of low molecular mass therapeutic agents for the inhibition of angiogenesi

    MicroRNA 193b-3p as a predictive biomarker of chronic kidney disease in patients undergoing radical nephrectomy for renal cell carcinoma

    Get PDF
    Background: A significant proportion of patients undergoing radical nephrectomy (RN) for clear-cell renal cell carcinoma (RCC) develop chronic kidney disease (CKD) within a few years following surgery. Chronic kidney disease has important health, social and economic impact and no predictive biomarkers are currently available. MicroRNAs (miRs) are small non-coding RNAs implicated in several pathological processes. Methods: Primary objective of our study was to define miRs whose deregulation is predictive of CKD in patients treated with RN. Ribonucleic acid from formalin-fixed paraffin embedded renal parenchyma (cortex and medulla isolated separately) situated >3 cm from the matching RCC was tested for miR expression using nCounter NanoString technology in 71 consecutive patients treated with RN for RCC. Validation was performed by RT–PCR and in situ hybridisation. End point was post-RN CKD measured 12 months post-operatively. Multivariable logistic regression and decision curve analysis were used to test the statistical and clinical impact of predictors of CKD. Results: The overexpression of miR-193b-3p was associated with high risk of developing CKD in patients undergoing RN for RCC and emerged as an independent predictor of CKD. The addition of miR-193b-3p to a predictive model based on clinical variables (including sex and estimated glomerular filtration rate) increased the sensitivity of the predictive model from 81 to 88%. In situ hybridisation showed that miR-193b-3p overexpression was associated with tubule-interstitial inflammation and fibrosis in patients with no clinical or biochemical evidence of pre-RN nephropathy. Conclusions: miR-193b-3p might represent a useful biomarker to tailor and implement surveillance strategies for patients at high risk of developing CKD following RN

    Sequence variation in mature microRNA-608 and benefit from neo-adjuvant treatment in locally advanced rectal cancer patients

    Get PDF
    Single nucleotide polymorphisms (SNPs) in microRNA genes have been associated with colorectal cancer (CRC) risk, survival and response to treatment. Conflicting results are available on the association between rs4919510, a SNP in mature miR-608 and clinical outcome in CRC. Here, we analyzed the association between rs4919510 and benefit from perioperative treatment in a randomised phase II trial of neoadjuvant Capecitabine and Oxaliplatin (CAPOX) followed by chemo-radiotherapy, surgery and adjuvant CAPOX ± Cetuximab in high-risk locally advanced rectal cancer (LARC). A total of 155/164 (94.5%) patients were assessable. 95 (61.3%) were homozygous for CC, 55 (35.5%) heterozygous (CG) and 5 (3.2%) homozygous for GG. Median follow-up was 64.9 months. In the CAPOX arm the 5-year progression-free survival (PFS) and overall survival (OS) rates were 54.6% and 60.7% for CC and 82.0% and 82.1% for CG/GG, respectively (HR PFS 0.13, 95% CI: 0.12-0.83, P = 0.02; HR OS 0.38, 95% CI: 0.14-1.01, P = 0.05). In the CAPOX-C arm PFS and OS were 73.2 and 82.2%, respectively for CC carriers and 64.6 and 73.1% for CG/GG carriers (HR PFS 1.38, 95% CI: 0.61-3.13, P = 0.44; HR OS 1.34, 95% CI: 0.52-3.48, P = 0.55). An interaction was found between study treatment and rs4919510 genotype for both PFS (P = 0.02) and OS (P = 0.07). This is the first study investigating rs4919510 in LARC. The CC genotype appeared to be associated with worse prognosis compared to the CG/GG genotype in patients treated with chemotherapy and chemo-radiotherapy alone. Addition of Cetuximab to chemotherapy and chemo-radiotherapy in CC carriers appeared to improve clinical outcome

    Wnt signalling modulates transcribed-ultraconserved regions in hepatobiliary cancers

    Get PDF
    Objective Transcribed-ultraconserved regions (T-UCR) are long non-coding RNAs which are conserved across species and are involved in carcinogenesis. We studied T-UCRs downstream of the Wnt/β-catenin pathway in liver cancer. Design Hypomorphic Apc mice (Apcfl/fl) and thiocetamide (TAA)-treated rats developed Wnt/β-catenin dependent hepatocarcinoma (HCC) and cholangiocarcinoma (CCA), respectively. T-UCR expression was assessed by microarray, real-time PCR and in situ hybridisation. Results Overexpression of the T-UCR uc.158− could differentiate Wnt/β-catenin dependent HCC from normal liver and from β-catenin negative diethylnitrosamine (DEN)-induced HCC. uc.158− was overexpressed in human HepG2 versus Huh7 cells in line with activation of the Wnt pathway. In vitro modulation of β-catenin altered uc.158− expression in human malignant hepatocytes. uc.158− expression was increased in CTNNB1-mutated human HCCs compared with non-mutated human HCCs, and in human HCC with nuclear localisation of β-catenin. uc.158− was increased in TAA rat CCA and reduced after treatment with Wnt/β-catenin inhibitors. uc.158− expression was negative in human normal liver and biliary epithelia, while it was increased in human CCA in two different cohorts. Locked nucleic acid-mediated inhibition of uc.158− reduced anchorage cell growth, 3D-spheroid formation and spheroid-based cell migration, and increased apoptosis in HepG2 and SW1 cells. miR-193b was predicted to have binding sites within the uc.158− sequence. Modulation of uc.158− changed miR-193b expression in human malignant hepatocytes. Co-transfection of uc.158− inhibitor and anti-miR-193b rescued the effect of uc.158− inhibition on cell viability. Conclusions We showed that uc.158− is activated by the Wnt pathway in liver cancers and drives their growth. Thus, it may represent a promising target for the development of novel therapeutics
    corecore