120 research outputs found

    Towards more sustainable construction–application of superabsorbent polymers in cementitious matrices with reduced carbon footprint

    Get PDF
    Construction industry is constantly searching for sustainable innovations to mitigate negative environmental impacts. Ground granulated blast-furnace slag (GGBS) is a well-known supplementary cementitious material which contributes to reduction of energy and CO2 emissions from cement industry. However, its use in cementitious systems leads to materials with high cracking susceptibility due to their greater autogenous shrinkage triggered by self-desiccation processes. This problem is even more pronounced when concrete is exposed to severe dry-hot weather conditions, such as in North Africa. In order to mitigate this negative effect of cracking, internal curing agents in the form of Superabsorbent polymers (SAP) can be successfully used. This approach leads to more durable cement based materials and in turn more sustainable constructions

    Neuroanatomical Changes Underlying Vertical HIV Infection in Adolescents

    Get PDF
    Purpose: The aim of this study was to investigate how human immunodeficiency virus (HIV) affects brain development in adolescents, what are susceptible brain regions, and how these brain structural changes correlate with cognitive abilities.Methods: We used structural magnetic resonance imaging to examine gray matter volume and cortical thickness in 16 HIV-infected children (mean age = 13.63 years) and 25 HIV-exposed uninfected children (mean age = 13.32 years), 12 of them were subjected to a 1-year repetitive magnetic resonance scan of the brain. Five neurocognitive tests were performed on each subject to assess cognitive performance in different areas.Results: Cross-sectional studies showed that the gray matter volume of HIV-infected children was widely reduced (mainly in the bilateral frontal, temporal, and insular regions, and cerebellum). The changes in cortical thickness were mainly due to thinning of the right temporal lobe and thickening of the left occipital lobe. Longitudinal studies showed that the gray matter volume reduction of HIV-infected children after 1 year mainly occurs in the advanced functional area of the right prefrontal, parietal lobe and the motor area, cortical thinning of brain regions were sensorimotor cortex and the limbic system. The gray matter volume of the bilateral cerebellum was positively correlated with the performance of the Wisconsin Card Sorting Test, while the cortical thickness of the right dorsolateral prefrontal cortex was negatively correlated with this test.Conclusion: This study found that HIV-infected pubertal children showed a delayed cortical maturation with atrophy. This abnormal pattern of cortical development may be the structural basis for cognitive impairment in HIV-infected children

    Thermodynamic modelling of alkali-activated slag cements

    Get PDF
    This paper presents a thermodynamic modelling analysis of alkali-activated slag-based cements, which are high performance and potentially low-CO2 binders relative to Portland cement. The thermodynamic database used here contains a calcium (alkali) aluminosilicate hydrate ideal solid solution model (CNASH_ss), alkali carbonate and zeolite phases, and an ideal solid solution model for a hydrotalcite-like Mg-Al layered double hydroxide phase. Simulated phase diagrams for NaOH- and Na2SiO3-activated slag-based cements demonstrate the high stability of zeolites and other solid phases in these materials. Thermodynamic modelling provides a good description of the chemical compositions and types of phases formed in Na2SiO3-activated slag cements over the most relevant bulk chemical composition range for these cements, and the simulated volumetric properties of the cement paste are consistent with previously measured and estimated values. Experimentally determined and simulated solid phase assemblages for Na2CO3-activated slag cements were also found to be in good agreement. These results can be used to design the chemistry of alkali-activated slag-based cements, to further promote the uptake of this technology and valorisation of metallurgical slags

    Generalized Structural Description of Calcium–Sodium Aluminosilicate Hydrate Gels: The Cross-Linked Substituted Tobermorite Model

    Get PDF
    Structural models for the primary strength and durability-giving reaction product in modern cements, a calcium (alumino)silicate hydrate gel, have previously been based solely on non-cross-linked tobermorite structures. However, recent experimental studies of laboratory-synthesized and alkali-activated slag (AAS) binders have indicated that the calcium–sodium aluminosilicate hydrate [C-(N)-A-S-H] gel formed in these systems can be significantly cross-linked. Here, we propose a model that describes the C-(N)-A-S-H gel as a mixture of cross-linked and non-cross-linked tobermorite-based structures (the cross-linked substituted tobermorite model, CSTM), which can more appropriately describe the spectroscopic and density information available for this material. Analysis of the phase assemblage and Al coordination environments of AAS binders shows that it is not possible to fully account for the chemistry of AAS by use of the assumption that all of the tetrahedral Al is present in a tobermorite-type C-(N)-A-S-H gel, due to the structural constraints of the gel. Application of the CSTM can for the first time reconcile this information, indicating the presence of an additional activation product that contains highly connected four-coordinated silicate and aluminate species. The CSTM therefore provides a more advanced description of the chemistry and structure of calcium–sodium aluminosilicate gel structures than that previously established in the literature

    Blast furnace slag-Mg(OH)(2) cements activated by sodium carbonate

    Get PDF
    The structural evolution of a sodium carbonate activated slag cement blended with varying quantities of Mg(OH)2 was assessed. The main reaction products of these blended cements were a calcium-sodium aluminosilicate hydrate type gel, an Mg-Al layered double hydroxide with a hydrotalcite type structure, calcite, and a hydrous calcium aluminate phase (tentatively identified as a carbonate-containing AFm structure), in proportions which varied with Na2O/slag ratios. Particles of Mg(OH)2 do not chemically react within these cements. Instead, Mg(OH)2 acts as a filler accelerating the hardening of sodium carbonate activated slags. Although increased Mg(OH)2 replacement reduced the compressive strength of these cements, pastes with 50 wt% Mg(OH)2 still reached strengths of ∌21 MPa. The chemical and mechanical characteristics of sodium carbonate activated slag/Mg(OH)2 cements makes them a potentially suitable matrix for encapsulation of high loadings of Mg(OH)2-bearing wastes such as Magnox sludge

    Influence of limestone on the hydration of ternary slag cement

    Get PDF
    The hydration kinetics, microstructure and pore solution composition of ternary slag-limestone cements have been investigated. Commercial CEM I 52.5 R was blended with slag and limestone; maintaining a clinker to SCM ratio of 50:50 with up to 20% slag replaced by limestone. The sulphate content was maintained at 3% in all composite systems. Hydration was followed by a combination of isothermal calorimetry, chemical shrinkage, scanning electron microscopy, and thermogravimetric analysis. The hydration of slag was followed by the implementation of QXRD/PONKCS method. The accuracy of the calibrated PONKCS phase was assessed on slag and corundum mixes of varying ratios, at different w/s ratios. Thus, the method was used to analyse hydrated cements without dehydrating the specimens. The results show that the presence of limestone enhanced both clinker and slag hydration. The pore volume and pore solution chemistry were further examined to clarify to the synergistic effects. The nucleation effects account for enhanced clinker hydration while the space available for hydrate growth plus lowering of the aluminium concentration in the pore solution led to the improved slag hydration

    Clay calcination technology: state-of-the-art review by the RILEM TC 282-CCL

    Get PDF
    The use of calcined clays as supplementary cementitious materials provides the opportunity to significantly reduce the cement industry’s carbon burden; however, use at a global scale requires a deep understanding of the extraction and processing of the clays to be used, which will uncover routes to optimise their reactivity. This will enable increased usage of calcined clays as cement replacements, further improving the sustainability of concretes produced with them. Existing technologies can be adopted to produce calcined clays at an industrial scale in many regions around the world. This paper, produced by RILEM TC 282-CCL on calcined clays as supplementary cementitious materials (working group 2), focuses on the production of calcined clays, presents an overview of clay mining, and assesses the current state of the art in clay calcination technology, covering the most relevant aspects from the clay deposit to the factory gate. The energetics and associated carbon footprint of the calcination process are also discussed, and an outlook on clay calcination is presented, discussing the technological advancements required to fulfil future global demand for this material in sustainable infrastructure development

    Uptake of chloride and carbonate by Mg-Al and Ca-Al layered double hydroxides in simulated pore solutions of alkali-activated slag cement

    Get PDF
    Chloride ingress and carbonation are major causes of degradation of reinforced concrete. To enable prediction of chloride ingress, and thus to improve the durability of structural alkali-activated slag cement (AAS) based concretes, it is necessary to understand the ionic interactions taking place between chlorides, carbonates, and the individual solid phases which comprise AAS. This study focused on two layered double hydroxides (LDH) representing those typically identified as reaction products in AAS: an Mg-Al hydrotalcite-like phase, and an AFm structure (strĂ€tlingite), in simulated AAS pore solutions. Surface adsorption and interlayer ion-exchange of chlorides occurred in both LDH phases; however, chloride uptake in hydrotalcite-group structures is governed by surface adsorption, while strĂ€tlingite shows the formation of a hydrocalumite-like phase and ion exchange. For both Ca-Al and Mg-Al LDHs, decreased chloride uptakes were observed from solutions with increased [CO₃ÂČ⁻]/[OH⁻] ratios, due to the formation of carbonate-containing hydrotalcite and decomposition of AFm phases, respectively
    • 

    corecore