528 research outputs found

    Compressor and fan wake characteristics

    Get PDF
    A triaxial probe and a rotating conventional probe, mounted on a traverse gear operated by two step motors were used to measure the mean velocities and turbulence quantities across a rotor wake at various radial locations and downstream stations. The data obtained was used in an analytical model developed to study how rotor flow and blade parameters and turbulence properties such as energy, velocity correlations, and length scale affect the rotor wake characteristics and its diffusion properties. The model, includes three dimensional attributes, can be used in predicting the discrete as well as broadband noise generated in a fan rotor, as well as in evaluating the aerodynamic losses, efficiency and optimum spacing between a rotor and stator in turbomachinery

    Neuromorphic Tactile Sensing System for Textural Features Classification

    Get PDF
    Artificial tactile sensing systems have gained significant attention in recent years due to their potential to enhance human-machine interaction. Numerous initiatives have been introduced to shift the computational paradigms of these systems towards a more biologically inspired approach, by incorporating neuromorphic computing methods. Despite the significant advances made by these systems, dependence on complex offline methods for classification (i.e. hand-crafted encoding features), remains a limitation for their real-time deployment. In this work, we present a neuromorphic tactile PVDF-based sensing system for textural features classification, that employs raw signals directly for classification. We first converted raw signals into spikes and then trained recurrent spiking neural networks (RSNNs) using Backpropagation Through Time (BPTT) with surrogate gradients to perform classification. We proposed an optimization method based on tuning the refractory period of the encoding neurons, to explore a potential trade-off between the computational cost and classification accuracy of the RSNN. The proposed method effectively identified two RSNNs with refractory period configurations that achieved a trade-off between the two evaluation metrics. Following this, we reduced the inference time steps of the selected RSNN during inference using a rate-coding based method. This method succeeded in saving around 26.6% out of the total original time steps. In summary, the proposed system paves the way for establishing an end-to-end neuromorphic approach for tactile textural features classification, through deploying the selected RSNNs on a dedicated neuromorphic hardware device for real-time inferences

    Bisphosphonate's and Intermittent Parathyroid Hormone's Effect on Human Spinal Fusion: A Systematic Review of the Literature.

    Get PDF
    There has been a conscious effort to address osteoporosis in the aging population. As bisphosphonate and intermittent parathyroid hormone (PTH) therapy become more widely prescribed to treat osteoporosis, it is important to understand their effects on other physiologic processes, particularly the impact on spinal fusion. Despite early animal model studies and more recent clinical studies, the impact of these medications on spinal fusion is not fully understood. Previous animal studies suggest that bisphosphonate therapy resulted in inhibition of fusion mass with impeded maturity and an unknown effect on biomechanical strength. Prior animal studies demonstrate an improved fusion rate and fusion mass microstructure with the use of intermittent PTH. The purpose of this study was to determine if bisphosphonates and intermittent PTH treatment have impact on human spinal fusion. A systematic review of the literature published between 1980 and 2015 was conducted using major electronic databases. Studies reporting outcomes of human subjects undergoing 1, 2, or 3-level spinal fusion while receiving bisphosphonates and/or intermittent PTH treatment were included. The results of relevant human studies were analyzed for consensus on the effects of these medications in regards to spinal fusion. There were nine human studies evaluating the impact of these medications on spinal fusion. Improved fusion rates were noted in patients receiving bisphosphonates compared to control groups, and greater fusion rates in patients receiving PTH compared to control groups. Prior studies involving animal models found an improved fusion rate and fusion mass microstructure with the use of intermittent PTH. No significant complications were demonstrated in any study included in the analysis. Bisphosphonate use in humans may not be a deterrent to spinal fusion. Intermittent parathyroid use has shown early promise to increase fusion mass in both animal and human studies but further studies are needed to support routine use

    A three-dimensional structured/unstructured hybrid Navier-Stokes method for turbine blade rows

    Get PDF
    A three-dimensional viscous structured/unstructured hybrid scheme has been developed for numerical computation of high Reynolds number turbomachinery flows. The procedure allows an efficient structured solver to be employed in the densely clustered, high aspect-ratio grid around the viscous regions near solid surfaces, while employing an unstructured solver elsewhere in the flow domain to add flexibility in mesh generation. Test results for an inviscid flow over an external transonic wing and a Navier-Stokes flow for an internal annular cascade are presented

    Three-dimensional viscous flow analysis inside a turbine volute

    Get PDF
    A three-dimensional numerical method has been developed to analyze the complex flow field inside a turbine volute. Comparisons are made between solutions with different boundary conditions

    Large Eddy Simulation of Transonic Flow Field in NASA Rotor 37

    Get PDF
    The current paper reports on numerical investigations on the flow characteristics in a transonic axial compressor, NASA Rotor 37. The flow field was used previously as a CFD blind test case conducted by American Society of Mechanical Engineers in 1994. Since the CFD blind-test exercise, many numerical studies on the flow field in the NASA Rotor 37 have been reported. Although steady improvements have been reported in both numerical procedure and turbulence closure, it is believed that all the important aspects of the flow field have not been fully explained with numerical studies based on the Reynolds Averaged Navier-Stokes (RANS) solution. Experimental data show large dip in total pressure distribution near the hub at downstream of the rotor at 100% rotor speed. Most original numerical solutions from the blind test exercise did not predict this total pressure deficit correctly. This total pressure deficit at the rotor exit was attributed to a hub corner flow separation by the author. Several subsequent numerical studies with different turbulence closure model also calculated this dip in total pressure rise. Also, several studies attributed this total pressure deficit to a small leakage flow coming from the hub in the test article. As the experimental study cannot be repeated, either explanation cannot be validated. The primary purpose of the current investigation is to investigate the transonic flow field with both RANS and a Large Eddy Simulation (LES). The RANS approach gives similar results presented at the original blind test exercise. Although the RANS calculates higher overall total pressure rise, the total pressure deficit near the hub is calculated correctly. The numerical solution shows that the total pressure deficit is due to a hub corner flow separation. The calculated pressure rise from the LES agrees better with the measured total pressure rise especially near the casing area where the passage shock interacts with the tip clearance vortex and flow becomes unsteady due to this interaction. The LES simulation also calculates the total pressure rise deficit near the hub and it agrees well with the measured data
    • …
    corecore