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Abstract

A three-dimensional viscous structured /
unstructured hybrid scheme has been developed for
numerical computation of high Reynolds number
turbomachinery flows. The procedure allows an
efficient structured solver to be employed in the
densely clustered, high aspect-ratio grid around the
viscous regions near solid surfaces, while employing
an unstructured solver elsewhere in the flow domain
to add flexibility in mesh generation. Test results for
an inviscid flow over an external transonic wing and a
Navier-Stokes flow for an internal annular cascade
are presented.

Introduction

In modern turbomachinery designs, the rotor and
stator blade rows often possess extreme turning
angles such that the flow direction deviates greatly
from the axial direction. These geometries frequently
cause difficulties in generating structured meshes [1].
In order to impose point-to-point periodicity on
periodic boundaries in the domain, the computational
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grids are typically forced into highly skewed shapes
that decrease the accuracy of the solvers. One remedy
for reducing the grid skewness is to forego the point-
to-point correspondence on the periodic boundaries
and to interpolate solution values where necessary.
The disadvantage of the non-periodic grid approach is
that the local density of grid lines on either side of a
periodic boundary may be vastly different. Hence,
flow features resolved on one side of the domain
boundary may be diffused or lost when interpolated to
a coarser grid on the other side. Another solution to
grid skewness is to use unstructured meshes.
However, the cost and technology of present day
unstructured solvers still leave much room for
improvement.

The computation of both inviscid and viscous
flows on unstructured triangular meshes in two
dimensions, and tetrahedral meshes in three
dimensions, has matured significantly in recent years
[2-7]. The ability of unstructured solvers to handle
complex geometries has proven to be valuable for
many computations. However, the geometric
flexibility of unstructured grid solvers is also the
source of their disadvantages when compared to
structured solvers. Due to the naturally-ordered data
connectivity of structured grids, structured solvers
require much less memory (especially for implicit
schemes), implicit structured solvers are straight
forward to code, and turbulence modeling is easier to
implement.

The shortcomings of both structured and
unstructured methodologies are continuously being
addressed and improved. In the meantime, however,
it is possible to take advantage of the best properties
of both methodologies. In the present paper, a
solution procedure which couples an efficient



structured solver with an unstructured solver is
presented. The hybrid procedure takes advantage of
the computational efficiency of structured codes and,
at the same time, is able to benefit from the geometric
flexibility of unstructured solvers. With the hybrid
approach, densely packed structured grids can be
placed in the highly viscous regions near solid
surfaces, and unstructured grids can be used away
from solid surfaces [8-10]. This approach can avoid
the severe grid skewness commonly experienced by
fully structured grids around turbine blades with high
turning angles. The procedure has various other
applications as well, such as providing a means of
connecting multi-body geometries for Chimera-type
grids to insure node-to-node correspondence [11-12].

The strategy of coupling structured and
unstructured methods has been implemented for two-
dimensional turbomachinery computations by many
researchers in the past [13-15]. The present work
extends this strategy to three-dimensional
turbomachinery flows. The hybrid solution technique
is first tested for an external fixed-wing transonic flow
case and the result is compared with a structured
solution for validation. The code is then applied to an
annular cascade and the result is compared with
experimental data.

Formulation

In this section, the solution procedure for the
unstructured solver is first described, followed by the
procedure for the structured solver. Since both the
structured and the unstructured solvers used in this
paper have been previously documented, only brief
outlines of the mathematical and numerical
formulations are given. Lastly, the coupling procedure
used to integrate the two solvers is detailed.

Unstructured Solver

Governing Equation

The time dependent, Reynolds averaged,
compressible Navier-Stokes equations, which express
the conservation of mass, momentum, and energy, are
solved. The turbulence viscosity is calculated using
the high Reynolds number turbulence model of
Launder and Spalding [16]. The equations of motion,
written in an integral form for a bounded domain Q
with a boundary aQ, are

-fffr2 Q
dV + fjdn F(Q) - ndSdt (1)

= ffda G(Q)-ndS+ fffnS(Q)dV

where Q is the unknown vector containing the
conserved properties

Q = {p, Pu, P U, Pw, eo, Pk , P E1T	 (2)

In the above equation, p is the fluid density. u, v, and
w are the Cartesian velocity components in x, y, and z

directions, respectively. eo is the total energy per unit
volume. The turbulent kinetic energy and turbulent
kinetic energy dissipation rate are represented by k
and E. The vector F is the convective flux term, G is
the viscous term, and S is the source term containing
the production and destruction of turbulent kinetic
energy. A complete description of the governing
equations is presented in Reference [17] and will not
be detailed here for brevity.

Inviscid Flux Spatial Discretization

The inviscid flux across each cell face xis
computed using Roe's flux-difference splitting formula
[ 18]

F, = 2 [F(QL) + F(QR) — IA (Q R — Q L )] (3)
LL	 x

Here, Q L and Q R are the state variables to the left
and right of the interface K. The matrix A is
computed by evaluating

A = ^	 (4)

with Roe-averaged quantities so that

F(QR) — F( QL ) = A[Q R — QL 1	 (5)

is satisfied.
For a first-order scheme, the primitive variables

at each cell face are set equal to the cell-centered
averages on either side of the face. For a higher-order
scheme, estimation of the state at each face is
achieved by interpolating the solution at each time
step with a Taylor series expansion in the
neighborhood of each cell center. The cell-averaged
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solution gradients required at the cell center for the
expansions are computed using Gauss' theorem by
evaluating the surface integral for the closed surface
of the tetrahedra. This process can be simplified using
geometric invariant features of tetrahedra [4]. The
resulting second-order formula for the flow state at
each cell face can be written as

of i.z.a = Ali + 4 L 3 (qn I + qnz + qn3 ) — qn4 ]	 (6)

where the subscripts nl , n2 , n3 denote the nodes
comprising face f 1,2,3 of cell i, and n4 corresponds to
the opposite node. The expansion also requires the
nodal value of the solution, which can be computed
from the surrounding cell center data using a second-
order accurate pseudo-Laplacian averaging procedure
as suggested by Homes and Connell [19]. The three-
dimensional extension by Frink [20] is adopted in the
present calculations.

The convective terms of the turbulence equations
are calculated using a first-order accurate scheme in
the present paper to reduce the computational cost
and to ensure the numerical stability of the time
integration [21].

Viscous Flux Spatial Discretization

The evaluation of the viscous term G requires
first derivatives of the velocity, temperature, and k-E
values at the cell faces. They are achieved by first
evaluating the gradient of each required flow quantity
at the cell center from the known primitive variables
at each time step. The gradient of the desired
quantity is obtained by applying the gradient
theorem,

V¢n = V f^ On dS	 (7)
- 

where Q represents the volume of the domain over
which the theorem is applied. The scalar quantity ¢
can be the three components of velocity, the
temperature, or turbulence quantities. In the present
calculations, the integral domain is defined as the
individual tetrahedral cell, and the surrounding
surface area as2 consists of the four triangular
surfaces covering the cell. This formulation is
consistent with the numerical procedure of evaluating
the convective fluxes of the present cell-centered
scheme.

Once the gradients of the desired quantities are
known at the cell center, nodal values are calculated
using the pseudo-Laplacian averaging mentioned
earlier for the convective terms. The flux through
each of the triangular faces in equation (7) is obtained
by averaging the three nodal values for the triangle.
Once the gradients of the primitive variables are
obtained, the shear stresses and can be calculated,
from which G is evaluated at the cell center. The
nodal values of these quantities are calculated once
again by applying the pseudo-Laplacian averaging of
the surrounding cell center values. The surface flux of
these quantities in equation (1) is obtained by taking
the average of the three nodal values for each
triangular face of each cell.

Time Integration

The seven equations of motion are integrated in
time using an explicit 3-stage Runge-Kutta scheme
developed by Jameson et al. [22]. The inviscid fluxes
are evaluated at each time stage using values of
transport variables obtained at the previous stage of
the scheme rather then using values from the
previous iteration [23]. The viscous dissipation and
the source terms are evaluated prior to the first stage
and remain constant within that time iteration.

Local time stepping and implicit residual
smoothing are used to accelerate the convergence to
steady state. Inclusion of the viscous terms in the
residual smoothing procedure was essential to obtain
a stable and convergent solution. The implicit
smoothing is also applied to the turbulence equations.

Structured Solver

The structured Navier-Stokes analysis in the
present procedure uses a center- differenced, finite-
difference scheme. The code was originally a single-
block external flow solver developed for analysis of
fixed and rotary wings [24]. Multi-block capability has
since been added to the code and additional boundary
condition routines have also been implemented for
internal flow analysis.

The structured code solves the unsteady,
compressible, Reynolds-averaged Navier-Stokes
equation in strong conservation form for curvilinear
coordinates

dQ + d(E — Ev) + d(F — Fv) + d(G — Gv) _ 0 (8)
aT	 d^	 dq	 d;



Here, Q is the vector of conserved variables divided by
the Jacobian of the coordinate transformation. Five
unknowns are solved instead of seven as in the
unstructured solver since Baldwin-Lomax algebraic
[25] turbulence model is used for the structured
solver.

Time Integration

The solution vector is integrated in time using
the implicit Euler method, which is first-order
accurate in time. The nonlinear inviscid flux vectors
are linearized at every time level about their values at
the previous time level using Taylor expansions, e.g.

l
E n+1 = E a 	

n
+ dE AQ n+1 + O(AT2)

dQ	 (9)

= En +AnOQn+1

The viscous terms are evaluated explicitly. Explicit
treatment of the viscous terms still permits the use of
large time steps since the Reynolds numbers of
interest here are fairly large. To further reduce
computational time and memory, the radial/spanwise
flux derivatives are treated explicitly at the old time
level[26], but the new values are incorporated as soon
as they become available. This explicit treatment of
the spanwise flux terms enables the scheme to solve
the three-dimensional equations by solving one
spanwise station implicitly at a time. To eliminate
any dependency the solution may have on the
spanwise marching direction, the solver reverses the
marching direction with every spanwise sweep.

The resulting left-hand-side of the matrix
equation is approximately factored into alternating
directions

(I + AT S,A n )(I + OT b^Cn )AQn+1

(E n — Evn,n+1) + (F — Fv)n,n+l (10)
n

+(G n — Gvn,n+1)

The implicit operating matrices are then diagonalized
using a similarity transformation [27].

Spatial Discretization

Standard second-order central differencing is
used for the spatial derivatives. Spectral-radius-
scaled fourth/second-difference artificial dissipation
[22] is added for stability and to eliminate oscillations
near shocks. The viscous terms are evaluated using
half-point central differencing so that the
computational stencil for the stress terms uses only
three nodes in each of the three directions.

Hybrid Coupling

Since the structured code has multi-block
capability, the coupling procedure treats the
unstructured portion of the hybrid meshes as a
separate block. The blocks are solved independently
with respect to each other. Explicit boundary
conditions are updated at the end of each time
iteration. The two codes are loosely coupled,
essentially running independently of each other. The
only interaction between the structured solver and
the unstructured solver is through boundary
conditions. The advantage of this formulation is that
almost any two given codes can be coupled together.
In this paper, a central-differencing, finite-difference
procedure and an upwind cell-centered finite volume
procedure are coupled. The structured solver is
formulated in an inertial frame of reference where as
the unstructured solver is in a blade-fixed coordinate
system. For non-moving-boundary cases, such as
pressure-driven turbine stator flows, there is no
difference between the two formulations. However, for
moving-boundary cases, care must be taken when
transferring data between the two solvers depending
on how boundary conditions are prescribed. For
example, consider a wing traveling at a constant
velocity. Since the structured solver assumes the wing
is moving and the unstructured solver assumes the
domain is fixed in space, the total energy must be
converted between the two frames of reference. At the
end of each iteration, mass, momentum, and energy
values are communicated between the structured and
unstructured solvers.

Since the unstructured solver is a cell-centered
finite-volume scheme and the structured solver is a
vertex-based finite-difference scheme, the
unstructured and the structured grids are overlap by
one layer at the boundary in order to minimize
interpolation and extrapolation errors at the
boundary. By overlapping the grids instead of
abutting them against each other, the boundary nodes
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for the structured solver are interpolated from the
interior cell center values of the unstructured solver
Similarly, the cell boundary face values of the
unstructured solver are interpolated from interior
structured nodes. An illustration of the overlapped
grid in 2D is shown in Fig. 1.

red solver

structured solver

Figure 1. Structured-unstructured mesh overlapping
by one layer.

Once the grid construction is completed, a table is
generated to index unstructured nodes to their
corresponding structured nodes, and vise-versa. The
index is similar to the table generated between
structured block boundaries for multi-block
calculations.

Results and Discussion

Validation for both the structured [24] and the
unstructured solvers [28, 17] have been documented
previously and will not be presented here. To test the
structured-unstructured hybrid analysis, calculations
for a transonic inviscid flow over a fixed wing and a
viscous flow for a turbine stator blade are presented.

For all calculations in this paper, a structured
grid is first generated for the entire geometry. The
unstructured grids are generated by subdividing a
portion of the structured cells each into six
unstructured tetrahedra (Fig. 2). This procedure
simplifies grid generation and is suitable for the
purpose of code validation.

Figure 2. Unstructured tetrahedral cells generated
using structured cells.

Transonic Wing

The first calculation selected for the hybrid
scheme is a transonic wing at a freestream mach
number of 0.8 and at 1.25 0 angle-of-attack. For this
test case, flow periodicity is imposed on the two end-
wall boundaries to simulate a two-dimensional flow.

A purely structured solution for this case is first
obtained for comparison. An O-H grid topology is
used; that is, an O-grid is generated at each spanwise
station. For the structured calculation, each spanwise
station consists of 121 (streamwise) x 41 (normal)
points. Six spanwise stations are required due to the
memory allocation algorithms for the multi-block
structured solver. The number of spanwise stations
used does not alter the results since the code
simulates a two-dimensional problem.

For the structured-unstructured coupled
procedure, the grid is divided into three zones. The
inner zone, which wraps around the solid surface
(121x12), is calculated using the structured solver.
The middle zone (121x6), which wraps around the
inner structured zone, is subdivided into tetrahedra
for the unstructured solver. The outer zone, which
extends from the middle zone to the free stream, is
once again calculated using the structured solver.
Fig. 3 illustrates the three-zones described for this
case.



structured

unstructured

Figure 3. Structured-unstructured zones for the
external wing calculation.

unstructured coupling for multi-element airfoil
calculations where structured grids are place near the
solid surfaces and an unstructured solver connects the
structured grids and extends to the farfield. Since
structured solvers are generally more efficient, it
makes sense to minimize unstructured zones.

The unstructured solver can be run in both first-
and second-order modes, while the structured solver
is always second-order accurate. Surface pressure
distributions for both first- and second-order hybrid
solutions, as well as the fully structured solution are
shown in Fig 5. Both hybrid solutions agree very
closely with the standard structured solution, but the
first-order unstructured solution exhibits a larger
deviation on the lower surface.

-1

-0.5

Cp 0

0.5

1

1.5

The actual grid used for the calculation is shown in
Fig. 4.

0	 0.2	 0.4	 0.6	 0.8	 1
x/C

Figure 4. Structured-unstructured grid for the 2-D
wing calculation.

The purpose of dividing the calculation into three
zones is to simulate a Chimera type of grid where a
simple background grid is generated for the entire
domain and a structured grid is used around a solid
object. Instead of interpolating between the two grids,
an unstructured solver can be placed to connect the
two set of grids and obtain node-to-node
correspondence which remove the needs for
interpolation. For a finite volume approach, this also
insures flow conservation. This approach is also
recommended for multi-body calculations. Many
researchers have demonstrated structured-

Figure 5. Surface pressure distribution.

To examine the coupling between the structured-
unstructured solver across the three-zones, pressure
contour lines are shown in Fig. 6 for the first-order
and the second-order coupling, along with the single
block structured solver for comparison. For the first-
order coupling, a slight discontinuity exists across the
zonal boundary. However, the discontinuity is small
and barely perceptible on a global scale. For the
second-order coupling, the contours show the flow is
smooth with little indication of the presence of the
zonal boundaries. The mass flows in and out of the
sandwiched unstructured zone are within 0.03% of
each other, indicating that good flow conservation is



achieved. The unstructured shock is somewhat more
compact then the structured solver. One reason for
this is that every structured cell becomes six
tetrahedra so that in the streamwise direction, the
unstructured cells are twice as dense as the
structured cells. The present hybrid procedure
converges considerably slower then the single
structured grid due to the explicit formulation of the
incorporated unstructured solver, which requires a
low CFL number.

3-D Viscous Flow Through Turbine Blades-
Hybrid Procedure

turbulence modeling because the effects of turbulence
are much reduced outside the boundary layer.

The pressure contour lines across the structured
and unstructured zones are plotted in Fig. 8. The
same degree of smoothness as in the previous wing
case is observed. In Fig. 9, the chord wise surface
static pressures normalized by the inlet total pressure
are compared with experiment at 13.3%, 50%, and
86.7% span. An overall agreement is found accept
near the trailing edge where the computation on the
present coarse grid did not pick up the peak values.

Concluding Remarks
The second test case selected is a three-

dimensional annular cascade [29]. The geometry
consists of an annular ring of 36 turbine stator vanes.
The blades are 38.10 mm in span, untwisted, and of
constant profile with an axial chord of 38.23 mm. The
stator has a tip diameter of 508 mm and a hub-to-tip
radius ratio of 0.85. The inlet flow angle is parallel to
the axis of the cascade. The Reynolds number based
on the inlet total quantities and axial chord length is
898,650. The inlet total pressure and total
temperature at one axial-chord length upstream of
the blade leading edge are known from experiment.
The exit hub static pressure to inlet total pressure
ratio is 0.65 at 2.6 axial-chord lengths down stream of
the blade trailing edge.

For the hybrid calculation, the computational
domain extends one axial-chord length upstream of
the blade leading edge and 2.6 axial-chord lengths
down stream of the blade trailing edge. The exit hub
static pressure to inlet total pressure ratio is known
from experiment. The grid has 105 (inlet to exit) x29
(blade to blade) x15 (hub to tip) nodes and 23,000 cells
are subdivided into unstructured cells. The structured
grid wraps around the solid surfaces of the hub and
the turbine blade while the rest of the domain is filled
with unstructured cells. The hybrid grid at one radial
station for the annular cascade is shown in Fig. 7. For
the present grid, only 15 hub to shroud stations are
used and the grid density near the trailing edge is
very coarse (only 3 points defining the rounded
trailing edge). While such a coarse grid is not
acceptable for accurate prediction of viscous effects, it
is sufficient for monitoring the communication
between the structured and unstructured zones and to
predict the overall flow field.

A no-slip boundary condition is applied at the hub
and on the blade surfaces, and an inviscid slip
condition is applied on the shroud. In the coupled
calculation, the unstructured solver is run without

A three-dimensional, unstructured, Navier-
Stokes flow solver has been coupled with a three-
dimensional structured code to allow structured-
unstructured hybrid calculations. The two codes are
loosely coupled and interact only through boundary
conditions. The structured solver is a center-
differenced finite-difference scheme and the
unstructured solver is an upwind-differenced finite-
volume scheme.

The hybrid procedure has been tested for a
transonic wing and an annular cascade, and good
results have been obtained. The flow properties across
the boundary between the structured and
unstructured portions of the grid are smooth and well
behaved. The results show that two distinct
discretization techniques can be coupled together with
little effect on the solution accuracy, as long as both
are of same order.
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Figure 6.	 Pressure contour lines across the structured-unstructured zonal interface
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