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Abstract—Artificial tactile sensing systems have gained
significant attention in recent years due to their potential to
enhance human–machine interaction. Numerous initiatives
have been introduced to shift the computational paradigms of
these systems toward a more biologically inspired approach,
by incorporating neuromorphic computing methods. Despite
the significant advances made by these systems, depen-
dence on complex offline methods for classification (i.e.,
hand-crafted encoding features) remains a limitation for
their real-time deployment. In this work, we present a
neuromorphic tactile P(VDF-TrFE) poly(vinylidene fluoride
trifluoroethylene)-based (PVDF) sensing system for textural
features classification, that employs raw signals directly for
classification. We first converted raw signals into spikes and then trained recurrent spiking neural networks (RSNNs)
using backpropagation through time (BPTT) with surrogate gradients to perform classification. We proposed an
optimization method based on tuning the refractory period of the encoding neurons, to explore a potential trade-off
between the computational cost and the classification accuracy of the RSNN. The proposed method effectively identified
two RSNNs with refractory period configurations that achieved a trade-off between the two evaluation metrics. Following
this, we reduced the inference time steps of the selected RSNN during inference using a rate-coding-based method. This
method succeeded in saving around 26.6% out of the total original time steps. In summary, the proposed system paves
the way for establishing an end-to-end neuromorphic approach for tactile textural features classification, by deploying
the selected RSNNs on a dedicated neuromorphic hardware device for real-time inferences.

Index Terms— Gratings, recurrent spiking neural network (RSNN), refractory period, spatiotemporal, tactile sensing
system, textural features.

I. INTRODUCTION
A. Motivation

HUMAN skin, with its vast network of sensory receptors,
serves as the primary interface with the external world,
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enabling it to perceive and interpret a diverse range of tactile
sensations. The perception of touch, which is delivered by
the skin, relies on four types of mechanoreceptors innervating
the glabrous skin, namely: Merkel cells (SA-I), Ruffini ending
(SA-II), Meissner (RA-I), and Pacinian’s (RA-II) corpus-
cles [1]. These mechanoreceptors, synergistically, contribute
to the somatosensory system in serving the exteroceptive
and interoceptive functions [2].Drawing inspiration from the
sophistication of human skin, artificial tactile sensing systems
have emerged, aiming to replicate the skin’s physiological
features, using a variety of methods (i.e., complex electronics,
data processing, and sophisticated materials). These systems
have important applications in prosthetics [3], [4] and robotics
[5]. This electronic skin (e-skin) endows the robots with
cutting-edge abilities to augment interaction with their sur-
roundings such as perceiving texture [6], stiffness [7], and
shape [8], [9]. Tremendous efforts have been made to establish
an adequate artificial replication of the human skin behavior
[10], [11], [12]. These endeavors include: 1) exploring a
wide range of materials used for sensor fabrication to cover
the mechanoreceptors’ frequency bandwidth (1 Hz–1 kHz)
[11]; 2) developing algorithms to process tactile information
efficiently [12] and effectively; and 3) minimizing the time
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TABLE I
RELEVANT WORKS ON TACTILE TEXTURE CLASSIFICATION

latency of the hosting device [10] and match the biological
range.

Various methods based on machine learning (ML) and deep
learning (DL) approaches have been studied to analyze tactile
data coming from tactile sensing systems, addressing both
classification [19] and regression tasks [20]. These algorithms
are hosted by dedicated edge accelerators near the sensors
for fast and efficient inferences. The aforementioned approach
has led to the development of a complete tactile system
that is utilized in various tactile recognition tasks such as
touch modality [21] and texture classification [22], object
recognition [8], and Braille letter reading [23], [24].

Despite all these technological advances that optimized
the performance of the artificial tactile sensing system,
it remains distant from emulating the sensory capabili-
ties of the human touch system [25]. The main reason
behind this disparity is that biological systems can pro-
cess even more complex information rapidly, efficiently, and
with significant differences in energy consumption compared
to the state-of-the-art systems [26]. Moreover, the artificial
systems rely on conventional computers [27] (i.e., Von-
Neumman-based) that, by their nature, cannot support rapid
computations [28].

To address the aforementioned limitations, we employ a
neuromorphic computing-based system inspired by the compu-
tational primitives found in the human somatosensory system,
to bridge the efficiency gap between artificial systems based
on conventional computing and their biological counterparts.
Neuromorphic computing, unlike conventional systems, fea-
tures brain-inspired computational primitives that are applied
at the software and hardware levels, with the aim of emulating
biological nervous systems [29], [30], [31]. This approach
involves the conversion of analog signals into digital asyn-
chronous spikes or events, carrying temporal and spatial
information, therefore, modeling the mechanoreceptors of the
skin. The emitted spikes can be exploited for classification
tasks using spiking neural networks (SNNs), that simulate
the neuronal spiking mechanism and plasticity observed in

the somatosensory system [32], [33]. Neuromorphic circuits
utilize mixed analog/digital hardware signals. This enables
the implementation of these SNNs and fully exploits their
intrinsic features. These features include event-driven pro-
cessing, asynchronous communication between neurons, and
learning based on local information [25], [34]. Therefore,
the neuromorphic approach through its biologically inspired
primitives is projected to optimize the artificial tactile sensing
system through performing robust information processing with
minimal use of hardware resources.

In this work, we focus on the classification of textural
features of artificial gratings. The inherent time-dependent
nature of the texture’s signals [35] imposes difficult challenges
during classification, such as capturing the significant tempo-
ral dependencies of the texture without relying on complex
methods. This is further compounded by the requirement for
rapid response in texture perception applications, such as
tactile feedback systems, making it one of the most formidable
challenges for artificial tactile systems [36].

B. Related Works
The human somatosensory system has been the inspiration

of considerable works in the literature that addressed texture
classification problems based on a neuromorphic approach.
Table I provides an overview of some existing literature on
tactile-based texture classification.

In general, these works model the firing behavior of the
biological mechanoreceptors to transform tactile signals into
spikes, followed by a feature extraction phase and then classi-
fication based on different classifiers. The proposed solutions
demand offline processing of raw signals, such as requiring
a whole window of signal (time window) to compute hand-
crafted features, before fetching the decision or action, which
correspondingly requires high-computational resources such
as memory footprint, power consumption, and high inference
time. Despite the wide range of proposed features, varying
from simple and basic features as in [13] and [15] to more
complex features as in [14] and [17], the drawback persists,
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Fig. 1. Overview of the proposed neuromorphic tactile sensing system. (a) Data collection: indentation touches were applied at different velocities
and forces. (b) Encoding of gratings’ raw signals into spikes by modeling the slow and rapid adaptive mechanoreceptors. (c) Proposed RSNN for
textural features classification. (d) Gratings’ classification.

by requiring a time window of signal for processing. Further-
more, most of these works employed the Izhikevich model
for encoding and spike conversion. Despite its efficiency
and precision in modeling the cortical neurons’ behavior,
it primarily focuses on analyzing spike features (i.e., fine
temporal structure). However, implementing it at the neural
network level presents a drawback due to its computational
cost [37]. Additionally, neglecting the temporal characteristics
inherent in texture encoding and exclusively addressing it
through rate-coding limits the generalizability of the pro-
posed solution for complex tactile applications as in [16]
and [18].

Most of the proposed solutions rely on piezoresistive sens-
ing systems [13], [14], [15], [16], which are characterized by
a low-frequency range response (<100 Hz) [38]. Conversely,
few relevant works adopted a P(VDF-TrFE) poly(vinylidene
fluoride trifluoroethylene)-based (PVDF) piezoelectric sens-
ing system for the same application as in [17] and [18].
According to [11], PVDF sensors exhibit a wide frequency
range (≤ 1 Hz–1 kHz), due to their fast dynamic response
(i.e., polymers crystallization), hence covering the range of
the mechanoreceptors in the human skin [39]. However, the
aforementioned solutions maintained offline-based complex
methods for texture classification.

C. Contribution
In this work, we present a neuromorphic tactile sensing

system for classifying the textural features of artificial grat-
ings. The proposed system consists of a PVDF-based sensing
system and neuromorphic classification framework that can
be implemented in real time to process and classify tactile
information as pictured in Fig. 1.

The main contributions of this article are summarized as
follows.

1) We present a recurrent SNN (RSNN) for textural
features classification. The RSNN is trained by the
surrogate gradient descent (SGD) [40] to process raw
signals and perform subsequent classification. Unlike
the exciting methods in the literature (see Table I), the
novelty of this work lies in classifying the artificial
grating using the raw tactile signals obtained from the
sensors, without the need to extract features.

2) We propose a strategy to control the computational cost
and the classification accuracy of the RSNN, based
on tuning the refractory period of the spiking neurons
during the encoding. The strategy allows the selection of
the network with a trade-off between the aforementioned
metrics for real-time deployment.

3) The selected network is further optimized by reducing
the number of simulation time steps in the inference
using a rate-coding approach. This method allows to
reduce the overall inference time and computational cost
of the network.

4) We evaluated the proposed neuromorphic system under
various experimental conditions, in particular, the slid-
ing velocity and indentation force. To the best of our
knowledge, this is the first study that undertakes such
an assessment while employing a PVDF-based sensing
system. The results demonstrate the robustness of the
proposed solution to the aforementioned variation of
sensing conditions.

The rest of this article is organized as follows. Section II
describes the tactile sensing system and the experimental
design. Section III presents the implemented neuromorphic
methods. Section IV depicts the proposed optimization meth-
ods. Section V addresses the conducted experiments to
evaluate the overall approach. Section VI reports the obtained
results.

II. MATERIALS

A. Sensing System and Experimental Setup
This study utilizes a PVDF-based sensing system origi-

nally developed for a prosthetic hand (see [10]). The system
comprises a biomimetic finger equipped with a piezoelectric
sensing array and embedded electronics. We adopted specif-
ically the piezoelectric sensing array (eight sensing units)
designed for the volar side of the distal phalanx of the
index finger as shown in Fig. 2(b) (sensor distribution). The
sensing units are screen-printed on a finger-shaped flexible
PET substrate. Each sensing unit comprises a P(VDF-TrFE)
poly(vinylidene fluoride trifluoroethylene) piezoelectric poly-
mer layer, sandwiched between two PEDOT:PSS electrodes
[see Fig. 2(b)]. The biomimetic finger was 3-D printed using
thermoplastic polyurethane (TPU) material. The sensing array
was shielded using conductive tapes and then attached to
the finger using double-sided adhesive tape. Finally, a thin
flexible cylindrical shape protective layer (Art. 5500 Dream,
Framisitalia) has been added on the top of the sensing array
forming a skin patch.

The embedded electronics presented in [41] were used
to acquire, sample, and send tactile signals to a host PC.
It comprises a 32-channel analog-to-digital converter DDC232
(Texas Instrument, US), and an ARM cortex-M0 low-power-
based microcontroller. The embedded electronics samples
at 2 KSamples/s/channel to cover the full frequency bandwidth
(1 Hz–1 kHz) of the sensors.
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Fig. 2. Experimental setup for texture classification. (a) Three-axis Cartesian robot employed in controlled-environment data collection. (b) Sensor
structure, distribution, and data processing. From left to right: Sensing unit structure and geometry. A biomimetic fingertip was sensorized with the
sensing array and mounted to the z-axis of the robot along with the embedded electronics. (c) Artificial gratings design and geometry. Each grating
was designed with a specific pitch size to control its coarseness level. (d) Illustration of the four phases of the data collection procedure.

A three-axis Cartesian robot was used to perform a series of
sliding actions on the gratings along the x-axis [see Fig. 2(a)].
The biomimetic finger was connected to the embedded elec-
tronics through a flat cable and both were fixed on the z-axis
as shown in Fig. 2(a). Each of the three axes of the Cartesian
robot is driven by three stepper motors, controlling the xyz
coordinates and the speed. To modulate the indentation load
on the biomimetic sensor, a 700-g weight was mounted on the
z-axis and hung to a spring. Data acquisition, visualization,
collection, and control of the Cartesian robot were imple-
mented using a graphical user interface (GUI) developed with
NI LabVIEW on a host PC [see Fig. 2(b)].

B. Tactile Stimuli
A total of eight gratings were designed and 3-D printed

using polylactic acid (PLA) [see Fig. 2(c)]. The plates host
a series of 1-mm-thick and 3-mm height ridges separated by
a pitch size (P) that varies between 4 and 0.5 mm with a
decrement of 0.5 mm. Thus, varying gradually the coarseness
level of the tactile stimuli from rough (P = 4 mm) to smooth
(P = 0.5 mm). Section 1.1 and Fig. S1 in the Supplemen-
tary Material describe and illustrate the characteristics of the
artificial gratings.

C. Experimental Protocol
The experiment consists of four main phases [see Fig. 2(d)].
1) Finger Preparation: The finger is located ∼1 cm above

the grating (preparation stage).
2) Normal Indentation: The finger is indented to the surface

of the grating for a period of ∼0.5 s with an indentation
force F [N].

3) Tangential Sliding: The finger slides tangentially for
200 mm across the grated surface along the x-axis with
a sliding velocity v [mm/s].

4) Release Indentation: After maintaining its position (end
of the grating surface) for 0.5 s, the finger is then
returned to its preparation position. This procedure is
repeated 100 times for each grating.

To investigate and analyze the relation between the per-
formance of the proposed neuromorphic system and the
experimental conditions (sliding velocities and indentation
forces), multiple experiments were performed with a range
of parameters commonly explored in the literature [42].
These experiments encompassed two sliding velocities v1 =

8.6 mm/s (minimum achievable velocity along the x-axis)
and v2 = 13.7 mm/s (maximum velocity). Additionally, three
indentation forces were considered Flow = 3 N, Fmedium =

6 N, and Fhigh = 12 N. In total, 600 trials are recorded in this
study, consisting of six distinct experimental combinations,
with each combination conducted 100 times per grating.

III. METHODOLOGY

This section presents the methods employed for textu-
ral features classification. First, we addressed the modeling
procedure of the biological mechanoreceptors employed to
encode the grating’s raw signal into spikes. Following this,
we presented the architecture of the RSNN employed for the
classification along with the training algorithm and procedure.

A. Encoding
We modeled two mechanoreceptors innervating the

Glabrous skin, specifically focusing on the Meissner corpuscle
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Fig. 3. Demonstration of the mechanoreceptors’ (eight SA-I and eight RA-I) modeling procedure based on the eight sensors output raw signals.
The currents of mechanoreceptors are computed through the constitutive equations in (2) and (3). These currents are then injected into the LIF
neuron for encoding. The output raw signal of a one PVDF sensor for Grating 1, collected with F = 12 N and v1 = 8.6 mm/s) is involved in this
illustration.

(rapid adaptive: RA-I) and the Merkel discs (slowly adaptive:
SA-I) afferents. The motivation for this choice is to consider
mechanoreceptors associated with texture perception with a
minimal computational cost. The Ruffini ending (SA-II) is
excluded as it is not implicated in texture perception [35],
[43], [44]. RA-II was omitted due to its higher computational
cost in modeling when compared to SA-I and RA-I receptors
(refer to Section 1.2 in the Supplementary Material for details).

The output raw signals of the eight PVDF sensors are fil-
tered by an exponential moving average (EMA) implemented
as microcode in the embedded electronics to reduce signal
noise online. A cut-off frequency of 30 Hz has been set
based on the conducted frequency analysis of all textures
across all the experimental conditions. The analysis revealed
a spectral range of principal information between 1.8 and
≈ 10 Hz. Frequency analysis is reported in Section 1.3 in
the Supplementary Material. Consequently, the filtered raw
signals are fed to the artificial spiking neuron to be encoded
and converted to digital spikes. The primary objective is not
to mimic the human mechanoreceptors with utmost fidelity
but rather to establish a straightforward framework for poten-
tial future hardware implementation. Therefore, this study
focuses on modeling the mechanoreceptors with a balance
between computational cost and the degree of precision in
modeling. In this regard, we adopt the leaky-integrate-and-fire
(LIF) neuron due to its lower computational cost compared
to the Izhikevich neuron, which is widely used in relevant
works [37]. The LIF neuron model is described as a dynamical
time-continuous system [45]

τm
dU (t)

dt
= − (U (t) − Urest) + Rm ∗ Iinput (t) (1)

where U (t) is the voltage membrane potential that defines the
state of the neuron, Ureset is the resting value, τm represents
the membrane time constant, Rm is the input resistance (equal
to 1 � for convenience), and Iinput(t) is the neuron’s input cur-

TABLE II
PARAMETERS OF THE LIF MODEL

rent. When an input current Iinput(t) is applied, the membrane
potential U (t) undergoes a depolarization phase (accumulation
of input current). Once U (t) reaches a defined threshold Vth,
the neuron emits a spike and the membrane potential is reset
to Ureset for a defined time called refractory period tref. The
parameter values of the LIF neuron are selected to approximate
regular spiking behavior in neurons [46], [47], [48] to encode
the dynamic and static stimulus [1]. Table II lists the parameter
values.

Fig. 3 demonstrates the procedure of modeling the SA-I and
RA-I mechanoreceptors. The raw signal of each PVDF sensor
is employed to model a combination of two mechanoreceptors:
one RA-I and one SA-I. Therefore, a total of eight RA-I
and eight SA-I neurons, corresponding to the eight PVDF
sensing units, are modeled and randomly distributed across the
finger index (see Fig. 3). The modeling procedure is outlined
sequentially as follows.

1) The output raw signal of each PVDF sensor undergoes
a conversion into two distinct currents: ISA-I and IRA-I
(step 1 in Fig. 3), using the following equations [16],
[49]:

ISA-I = SCSA-I ∗ Vsensor (t) (2)

IRA-I = SCRA-I ∗ |
d
dt

Vsensor (t) | (3)

where SCSA-I and SCRA-I represent the scaling coef-
ficients of currents ISA-I and IRA-I, respectively, and
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Vsensor(t) represents the output raw signal of the sensors
at time t .

2) The two currents ISA-I and IRA-I are applied to the LIF
neuron as an input Iinput(t) in (1) (step 2 in Fig. 3).

3) The LIF voltage membrane undergoes a depolarization
through the accumulation of the two currents until it
reaches Vth, triggering the emission of a spike (step 3 in
Fig. 3).

Following the same procedure of [13], [14], and [16],
the optimum scaling coefficients (SC) values SCSA-I and
SCRA-I are selected based on the interspike interval (ISI)
distribution of the neuron model in response to the grat-
ings stimuli with different SC values. The considered SC
values ranges are SCSA-I = [1800, 3200, 6400]/M� and
SCRA-I = [18 000, 32 000, 64 000]/M�. Generally, increasing
the SC value in both neurons typically results in an increased
firing rate (FR) and a consequent decrease in the ISI. The
ISI decrease yields an overlapping distribution of the ISI
associated with different gratings, leading to a close spiking
response. Conversely, decreasing the SC value leads to a low
FR and a substantial loss of information (due to the high
sparsity). This, in turn, leads to an increase in both the values
and distribution of the ISI in addition to an increase in response
latency. Therefore, the selected SC values are SCSA-I =

3200/M� and SCRA-I = 32000/M�, carrying a compromise
between the issues above (see Fig. S3 in Section 1.4 in the
Supplementary Material).

B. Recurrent Spiking Neural Networks
1) Architecture and Design: We designed a two-layer RSNN

inspired from [50] to perform classification as shown in
Fig. 1(c).

The network consists of an encoding layer (green)
with 16 LIF neurons (eight SA-I and eight RA-I receptors, see
Section III-A), a hidden layer (blue) with recurrent connections
(orange) among a pool of neurons Ni = {20, 30, 40, 50}

for model selection (to choose the best Ni based on per-
formance/computational cost trade-off), and a readout layer
including eight LIF neurons to classify the eight gratings.
The neurons of the readout layer (yellow) decode the spiking
activity to their corresponding grating based on maximal spike
count (rate-coding), in which the winning neuron is the one
with the highest number of emitted spikes.

The neurons in the hidden and output layers are based on
the current-based (CUBA) LIF neuron written in discrete time
as

Ui (t + 1) = β (Ui (t) + Ii (t)) · (1 − Ureset) (4)

where Ui is the voltage membrane potential of the i th neuron,
Ureset is the resting voltage, β is the voltage membrane decay
set as a hyperparameter [51], and Ii is the synaptic current that
carries the emitted spikes to the downstream neurons. t is used
to represent the time step tsteps. The choice behind adopting
the CUBA LIF neuron is supported by Bouanane et al. [52]
which demonstrated the efficient exploitation of the temporal
dynamics by this neuron through its exponentially decaying
synaptic current Ii (t). The postsynaptic current I (l)

i of i th

neuron in layer l is modeled as

I (l)
i (t + 1)=α I (l)

i (t)+
∑

j

Wi j S(l−1)
i (t)+

∑
j

Vi j S(l)
i (t) (5)

where α represents the current decay constant and considered
as a hyperparameter, Wi j and Vi j are, respectively, the forward
and recurrent learnable weights within each layer, and S(l)

i (t)
is the spike train of the i th neuron in layer l denoted as a
binary step function as follows:

S(l)
i (t) = 2 (Ui (t) − φ) (6)

where the firing threshold φ = 1 [40] (parameters discussion
in Section 1.5 in the Supplementary Material).

Initially, the raw signals are fed to the encoding layer as a
2-D tensor with size tsteps × Ns , where tsteps (time steps) =

Fc ∗ T , Fc = 2KSample/s, T is the input raw signal duration
in seconds, and Ns = 8 corresponds to the number of sensors
of the patch. Consequently, the generated spikes from the
encoding layer (see Fig. 3) will be forwarded to the RSNN
[see Fig. 1(c)] as a 2-D tensor with size tsteps × 2 ∗ Ns to be
decoded and classified, where the 2∗ Ns is the number of LIF
neurons modeling the SA-I and RA-I mechanoreceptors.

2) Surrogate Gradient Descent: The SGD presented by
Neftci et al. [40] is employed to train the RSNN to
classify the textural features of the gratings directly from
the emitted spikes without using hand-crafted features.
This supervised learning approach was introduced to solve
the non-differentiability issue of the spike activation and
back-propagate the error throughout the network using back-
propagation through time (BPTT). The method works by
maintaining the non-differentiable step function during the
inference of the RSNN (forward pass with trained parameters)
and replaces it with a differentiable function to compute its
gradient during the backward pass and update the learnable
weights of the network (Wi j and Vi j ) using the chain rule [53].
We used the gradient (partial derivative) of the fast sigmoid
function σ(x) (7) during the backward pass in this work

σ
(

U (l)
i

)
=

U (l)
i

1 + λ|U (l)
i |

(7)

where λ is the scale parameter of σ(x), and considered a
hyperparameter to be tuned based on the spiking activity of the
stimuli. A custom function has been designed in Pytorch [40],
[50] for the SGD implementation (SGD mathematical discus-
sion in Section 1.6 in the Supplementary Material).

3) Training Setup and Strategy: For network training, a
70%/15%/15% is chosen for the training/validation/testing
split, while maintaining balanced sets for the eight classes.
The investigated datasets are elaborated in Section V. The
networks are trained with a learning rate lr = 0.001 and
batch size = 128 for 100 epochs. The neural network intel-
ligence (NNI) toolkit [54] is used for the hyperparameter
optimization (HPO), and model selection, over 800 trials
(check Section 1.7 in the Supplementary Material for HPOs
list and description). The best-performing hyperparameters (in
terms of classification accuracy) are selected based on the
validation accuracy (intermediate result in NNI), and then
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Fig. 4. Impact of changing tref on the behavior of the voltage membrane potential and spiking activity of the LIF neuron using the same raw input.
(a) tref = 1 ms (spike count = 38), (b) tref = 5 ms (spike count = 19), and (c) tref = 10 ms (spike count = 15). Top: Voltage membrane dynamics of
the LIF neuron. Bottom: Raster plot or spiking activity of the LIF neuron.

Fig. 5. Raster plot showing the spiking activity of the eight SA-I (blue)
and eight RA-I (orange) mechanoreceptors for Gratings 1 (P = 4 mm),
5 (P = 2 mm), and 8 (P = 0.5 mm). The plots illustrate the impact of the
three forces at sliding velocity v1.

evaluated for generalizability using the testing set (final result
in NNI). The early stop criterion is involved during training
to avoid over-fitting, by monitoring the validation loss with
patience = 7.

4) Computational Cost Estimation: The computational cost
of the RSNN is estimated as the total number of synaptic
operations (SOPs) of the network. The SOPs are computed
using the methods presented in [55] by calculating the number
of SOPs Q(l) for each layer

Q(l)
= f (l+1)

∑
i

a(l)
i (8)

where a(l)
i denotes the spiking activity of i th neuron in layer

l, f (l+1) represents the number of neurons in layer l + 1 that
receive the spikes emitted by a single neuron in layer (l).
Following this, the total SOPs of the network are obtained
by summing Q(l) of all layers:

SOPs =

∑
l

Q(l). (9)

IV. OPTIMIZATION

This section illustrates the optimization methods proposed
to reduce the computational cost of the RSNNs while main-

TABLE III
PROPOSED REFRACTORY PERIODS

taining classification accuracy. Initially, we explored the
concept of the refractory period tref in spiking neurons,
examining its influence on the spike count and information.
Following, we exploited this concept to optimize the proposed
RSNN with a list of tref combinations. Finally, we addressed
another optimization method focused on decreasing the RSNN
simulation time steps through a rate-coding approach.

A. Refractory Period Fine-Tuning
The refractory period, or tref, is the duration that the spiking

neuron in the somatosensory cortex undergoes a silent mode
after spike emission, in which the membrane potential U (t)
remains at its resting value Ureset for a defined period [56],
[57]. We employed tref to control the number of emitted
spikes during encoding. The goal is to investigate the optimal
tref that enables the mechanoreceptors to transmit sufficient
information to downstream neurons in the RSNN (hidden and
readout layer neurons) with a minimal computational cost (in
terms of the number of spikes emitted). Fig. 4 shows the
impact of tref on the number of emitted spikes while applying
random input to the LIF neuron. Increasing tref [see Fig. 4(b)
and (c)] results in a longer silent period after spike emission.
Thereby, reducing the spiking activity and hence the number
of SOPs (computational cost). However, this comes at the
cost of a higher information loss, due to the ignored applied
input during this period. In contrast, decreasing tref results in a
shorter duration where the neuron is inactive or silent, leading
to increased spike emission, higher computational cost, and
reduced information loss [see Fig. 4(a)].

A list of six combinations of tref for SA-I and RA-I
mechanoreceptors during the encoding phase is proposed in
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Fig. 6. Impact of the proposed tref combinations (set1 and set2) on the spike count for SA-I (blue) and RA-I (orange) for an input of 1 s. The spike
count for both receptors illustrated their contribution to the total number of spikes (green). The three plots show the impact on gratings: grating 1
(left), grating 5 (middle), and grating 8 (right), at F = 12 N and v1. For the sake of visualization, the tref combinations where sorted in descending
order.

Table III, and notated as (trefRA−I and trefSA−I). The combi-
nations cover a range from 1 to 10 ms, encompassing the
typical range observed in cortical neurons [56], [57]. The
combinations are classified into set1 and set2. In particular,
set1 includes combinations with the same tref for both SA-I
and RA-I mechanoreceptors during the encoding [e.g., 1&1
(tref = 1 ms for SA-I and RA-I), 5&5 (tref = 5 ms), and
10&10 (tref = 10 ms)]. While set2 incorporates combinations
with different tref for SA-I and RA-I [e.g., 1&10 (1 ms for
RA-I and 10 ms for SA-I), 1&5 (1 ms for RA-I and 5 ms
for SA-I), and 5&10 (5 ms for RA-I and 10 ms for SA-
I)]. The motivation behind the proposed combinations in the
set2 relies on the firing dynamics of both mechanoreceptors.
Fig. 5 shows the effect of the indentation force on the spiking
activity of both mechanoreceptors across grating 1 (rough),
grating 5 (intermediate), and grating 8 (smooth). In general,
SA-I neurons consistently exhibit a higher spiking activity
(emitted spikes) compared to RA-I neurons. Hence, the set2
is proposed to significantly reduce the spiking activity of
the former neurons while partially mitigating the activity
of the latter. This is intended to achieve an approximate
balance between both mechanoreceptors and to study the
contribution of each, in terms of the conveyed encoded
information. The effect of co-varying the tref and the SC
values of currents ISA-I and IRA-I for both mechanoreceptors
is reported in Section 1.8 and Fig. S4 in the Supplementary
Material.

Fig. 6 shows the effect of each proposed combination during
the encoding phase in terms of spike count for SA-I and
RA-I. The tactile signals of three gratings with a salient
difference in coarseness level have been investigated for
simplicity. As expected, the 1&1 combination generated the
highest number of spikes in comparison to the others, since
both receptors (SA-I and RA-I) are inactive for the smallest
period after spike emission (i.e., 1 ms), thus increasing the
number of computations. Conversely, the 10&10 combination
exhibits the lowest spike count. This can be attributed to
its longer no-activity period, leading to occasional spiking
activity. Straightforwardly, the 5&5 combination falls between
the two previous values. The repetitive behavior of the three
combinations can also be observed in grating 1 (roughest),
grating 5 (intermediate), and grating 8 (smoothest), with a
variation in the overall spike count.

TABLE IV
DATASETS UTILIZED IN THE EXPERIMENTS

To examine the tref combinations of set2, it is necessary
to visualize and compare the individual contributions of the
SA-I and RA-I receptors. The two combinations 1&10 and
5&10 exhibited a total spike count that falls between the two
combinations 5&5 and 10&10. Additionally, the 1&5 combi-
nation achieves the second-highest spike count, following the
1&1 one. It can be observed in the two combinations 1&5 and
5&10 that SA-I receptors overcome RA-I receptors in terms of
the number of emitted spikes despite the smaller tref assigned
to the RA-I. The only combination that witnessed opposite
action is 1&10, as RA-I receptors emitted more spikes due to
the 9-ms difference between the assigned periods. Hence, the
SA-I receptors play a predominant role during the encoding
process (in terms of spike count).

B. Reducing Inference tsteps of RSNN
The RSNN’s readout layer decodes the weighted spiking

activity from the early layers during the forward pass using
a spike count-based procedure for gratings classification, so-
called RSNN inference. This method relies on rate coding,
where the neuron emitting the highest number of spikes within
a window of RSNN’s time steps tsteps [tsteps is defined in
Section III-B1, see (4)] is selected as the decoder for the
input stimuli (provides the classification label). In this work,
we introduce a new method to identify the neuron with the
highest spike count without requiring the entire tsteps. The
main motivation behind this is to investigate the possibility of
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Algorithm 1 Reducing Inference tref

Input:
- Decoded Spiking Tensor TD = [Time_steps × 8]
- index_true, Patience
1.Methodology

1: do
2: M = TD[1, :]

3: imax _prev = argmax(M)

4: count = 0
5: set Patience
6: for (i = 2; i ≤ T ime_steps; i + +) do
7: M =

∑i
j=1 TD[ j, :]

8: imax = argmax(M)

9: if imax == imax _prev then
10: count + +

11: if count == Patience then
12: T ime_new = i
13: index_op = imax
14: break
15: end if
16: else
17: counter = 0
18: imax _prev = imax
19: end if
20: end for
21: while (index_op ̸= index_true)
2. Return T ime_new

reducing the number of tsteps, thereby decreasing the overall
complexity and the inference time of the network for real-time
deployment.

Algorithm 1 illustrates the proposed method. During each
time step tstep, the neurons in the readout layer update their
states by either a spike emission {1} or no spike emission
{0}. A decoded spiking tensor TD with size tsteps × Nout
(Nout represents the neurons in the readout layer) stores the
aforementioned updates (spike or no spike) according to the
time step sequence. The method starts by selecting the neuron
index with the highest spike count (imax_prev in step 1.3) at
the first time step (for initialization). Afterward, the algorithm
computes the cumulative sum of the spike data stored in the
TD tensor for the Nout neurons (Nout = 8), starting from the
preceding time steps (step 1.7). This process results in an array
M that holds the spike count for each neuron over time. Next,
the algorithm identifies a new variable imax associated with the
highest spike count selected from M (step 1.8). The algorithm
then checks if imax is equal to the initialized imax_prev for a
predefined period specified by the patience value (Patience).
When this condition is met, the method returns two values:
1) index_op that is the neuron index with the maximum spike
count imax and 2) Time_new equal to the time step where the
condition is met. If this condition is not fulfilled, the counter
will be reset and start counting when the condition is met
again. However, if the obtained index_op does not match the
true decoding index index_true fetched during the training
procedure, the entire process will be repeated by adjusting the

Fig. 7. Flow of experimental results. Description of Experiment_1 (right)
and Experiment_2 (left).

Patience until the condition at step 1.21 is achieved. The neural
network will be simulated along this optimized Time_new
during inference.

V. EXPERIMENTS

Two experiments are conducted in this article: 1)
Experiment_1: analyzing the impact of varying the experi-
mental conditions (sliding velocities and indentation forces) on
the performance of the proposed networks (before applying the
suggested optimization methods) addressing each condition
individually and 2) Experiment_2: implementing the pro-
posed optimization methods on the designed RSNNs to elicit
the network with the best trade-off between the classification
accuracy and computational cost for future real-time hardware
deployment. The first part of the study utilizes six datasets (see
Table IV). Three of these datasets, Dv1,L , Dv1,M , and Dv1,H ,
incorporated tactile information collected with v1 = 8.6 mm/s
and forces = 3, 6, and 12 N, respectively. The other three
datasets, Dv2,L , Dv2,M , and Dv2,H , used v2 = 13.7 mm/s
and the same forces. The second part of the study merged
the six datasets into three new datasets (see Table IV) as
follows: Dv1,mix combines all forces collected with v1, Dv2,mix
includes all forces collected with v2, and Dmixed merges all
forces and velocities. The motivation behind this selection is
to challenge the entire neuromorphic approach in complex
experimental conditions, as preparation for future real scenar-
ios where the conditions are unknown and unpredictable.

VI. RESULTS AND DISCUSSION

The flow of the results is illustrated in Fig. 7. We started
from a fixed input including a 1&1 tref combination along
with all the designed RSNNs. We first explored the minimal
input duration Tmin that can be used to train the RSNNs,
employing the aforementioned fixed input. Following this, the
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Fig. 8. Tmin selection before optimization and network selection
(step 1 in Fig. 7). The selection is based on a trade-off between
classification accuracy and computational cost using the dataset Dmixed.
The aforementioned dataset is selected for this experiment since
the proposed neuromorphic system is designed to deal with all the
experimental conditions (indentation forces and sliding velocities). N
represents the hidden layer size of the RSNNs. Acc denotes the accu-
racy and SOPs stand for the number of SOPs in the legend.

selected Tmin is used in Experiment_1 and Experiment_2
(see Section V).

A. Minimal Input Duration Selection Tmin

According to [21] and [58], the input size impacts directly
the computational cost of the neural network since larger
input sequences require more computations to be performed.
Therefore, it is crucial to explore the minimal input duration
(i.e., the sliding duration) that carries sufficient information
to the system to perform successful classification. To select
Tmin, a set of gradually increasing input raw signal sizes
T = {.05, .10, .15, .20, .50, .70, 1.0} s are evaluated in terms
of classification accuracy and computational cost (number of
SOPs). Dmixed (see Table IV) is used here while relying on the
fixed input illustrated in Fig. 7 (1&1 tref combination along
with all the designed RSNNs). Fig. 8 presents the selection
procedure.

As shown in Fig. 8, all the RSNNs (Ni = 20, 30, 40, and 50)
demonstrate consistent classification accuracy acc ≥ 92% with
a time window T ≥ 200 ms. This indicates that the essential
spatiotemporal information of the gratings is adequately cap-
tured and repeated throughout the entire experiment. However,
the computational cost of the network is affected by the
size of the input, thereby a large input size yields a higher
computational cost. This is validated when examining the total
number of SOPs for each network that is increasing with the
increase in the input size. A significant drop in performance is
observed when evaluated with a shorter time window (T ≤ 100
ms), resulting in accuracy ranging from 46% to 77%. This drop
is related to the insufficient information within this T for the
networks to effectively learn and classify the gratings. Based
on this observation, the minimal time window Tmin should fall
between 100 and 200 ms. By taking into account the three
evaluation metrics: classification accuracy, computational cost
(SOPs), and latency, an input duration of 150 ms represents the
best choice. This selection is motivated by the slight decrease
in average accuracy ≈ 3% and ≈ 8% in the number of SOPs,

Fig. 9. Classification accuracy of the proposed models under all the
experimental conditions. Left: Datasets collected with v1 = 8 mm/s.
Right: Datasets collected with v2 = 13.7 mm/s. The refractory period
tref involved here is 1 ms for both receptors.

and finally the gain of 50 ms in latency in comparison to what
has been achieved using a 200-ms input duration. Therefore,
Tmin = 150 ms is selected as a convenient input size to the
RSNNs and to be used accordingly in Experiment_1 and
Experiment_2.

B. Effect of Experimental Conditions
The investigation into the influence of the experimental

conditions on the performance of the proposed RSNNs has
been conducted using the selected Tmin = 150 ms and with
the fixed input (1&1 tref combination, since the goal is not to
optimize the network at this point) as shown in Fig. 7 (right).
Fig. 9 provides an overview of the best-achieved results by the
RSNNs (with varying numbers of neurons Ni in the hidden
layer) across all the experimental conditions (three indentation
forces and two sliding velocities). The best configurations in
terms of classification accuracy correspond to the datasets
with high indentation forces (i.e., F = 12 N) in both sliding
velocities: Dv1,H and Dv2,H (i.e., acc ≥ 90%, except RSNN
with Ni = 20 in Dv1,H , i.e., acc = 87.8%), with a slight
increase in accuracy in the latter. On the other side, the
RSNNs exhibit a lower accuracy in classifying the gratings
with datasets collected with low indentation forces (i.e., F =

3 N): Dv1,L (acc ≤ 81%) and Dv2,L (acc ≤ 84%).
To discuss more, we computed the firing rate FR (Hz) =

nsp/TFR_window, where nsp is the number of emitted spikes
in a defined time window TFR_window window (we used
150 ms). Additionally, we calculated the inter-spike interval:
ISI (s) = ts(t+1)

− ts(t) where ts(t+1)
and ts(t) represent the time

of the following and preceding spikes respectively. Fig. 10
reports the computed encoding features (FR and ISI) for both
mechanoreceptors across all gratings and experimental condi-
tions. The overall normalized firing rate (Fig. 10(a)) reveals
that an increase in the indentation force results in higher FR
for both mechanoreceptors across all grating, and a decrease in
ISI (Fig. 10(b)). Besides, increasing the sliding velocity yield
a slight increase in the FR and accordingly the accuracy as
shown in Fig. 11 (discussed in details in Section VI-C). This
can be attributed principally to the amplitude of the output
raw signal of each grating which increased remarkably when
higher indentation forces were applied, and that induced a
higher spiking activity for both receptors as shown in Fig. 12
and Fig. S5 in supplementary material section 1.9. For that



AL HAJ ALI et al.: NEUROMORPHIC TACTILE SENSING SYSTEM FOR TEXTURAL FEATURES CLASSIFICATION 17203

Fig. 10. SA-I and RA-I firing dynamics across all gratings and experimental conditions. (a) Impact of varying the experimental conditions on the
FR of SA-I and RA-I neurons. Each matrix illustrates the normalized average FR obtained with a 150-ms time window, for each grating under all the
performed sensing conditions (three indentation forces and two sliding velocities). (b) Computed average ISI for RA-I (right) and SA-I (left) using a
1-s data sample for each grating (gratings are denoted with their number (1:1:8), i.e., Grating 1:1, Grating 2:2, Grating 3:3, etc). The computations
were carried out for the datasets Dv1,L, Dv1,M, and Dv1,H.

Fig. 11. Comparison of the evaluation metrics for the RSNNs in terms
of classification accuracy (left column) and the number of SOPs (right
column) when evaluated with the proposed tref combinations. All the
RSNNs are trained and tested using the merged datasets mentioned in
Table IV for generalization among all the experimental conditions. The
networks are sorted by the evaluation metrics in descending order.

reason, higher classification accuracy is observed with the
same conditions (using Dv1,H and Dv2,H ) due to the higher
induced information. Conversely, a low FR is remarked for
indentation force F = 3 N in both sliding velocities (due
to the lower amplitude of the raw signal (Fig. 12 row 1)),
thus leading to a drop in classification accuracy (accuracies
obtained in Dv1,L and Dv2,L ), due to the poor representative
information.

Generally, according to the computed encoding features and
obtained results, it is noticed that the amplitude of the sensors’
raw signal plays a vital role in reflecting the spatial shape
of the grating and thereby its coarseness level, which aligns
as well with the findings in [13]. Furthermore, increasing
the sliding velocity did not demonstrate any significant effect
on the induced FR of the mechanoreceptors across all grat-
ings, and consequently the classification accuracy. Although
increasing the sliding velocity from v1 = 8.6 mm/s to v2 =

13.7 mm/s (factor of ≈1.6) yields an increase in the principal

frequency of each grating with the same factor ≈ 1.6 (refer
to Table S1 in Section 1.3 in the Supplementary Material),
this was not translated in terms of encoding. Particularly, v2
exhibited a slight increase in the FR compared to v1 as shown
in Fig. 10(a). This observation can be linked to the slight
increase in the amplitude of the raw signal corresponding to
the increase in sliding velocity (see Fig. S6 in Section 1.10 in
the Supplementary Material). In contrast, increasing the inden-
tation force does not influence the principal frequency of the
gratings. Instead, it affects the FR and the performance of the
RSNNs. Hence, our system displays less dependence on speed
and a greater dependence on high force in textural features
classification.

C. Network Optimization and Selection
Following the guidance in Fig. 7, we implemented the

proposed optimization methods in Section IV on the fixed
input (1&1 tref combination with all RSNNs) after choos-
ing Tmin. We selected networks that demonstrated the best
trade-off between computational cost and classification accu-
racy. Afterward, we examined whether the same trade-off
achieved in step 1 was maintained by the selected networks in
step 2 (Decision block). If the trade-off persisted, the selected
networks proceeded to the final optimization stage involving
a reduction in time steps during inference. If not, a new Tmin
is checked.

1) Refractory Period Fine-Tuning: Fig. 11 summarizes the
obtained results after HPO. Each column in Fig. 11 represents
the dataset (see Section V), with the tref combinations on
the x-axis. The rows display the RSNNs, along with their
corresponding hidden layer size (Ni).

The overall behavior of the networks follows the trend
discussed in Section IV-A, and highlights the significant
impact of tuning the refractory period tref at the network level.
The combinations that display high spike emission (i.e., 1&1
and 1&5, see Fig. 6) enable all RSNNs to attain the highest
classification accuracy across the three investigated datasets.
These results can be attributed to the fact that smaller tref
allows the modeled mechanoreceptors in the encoding layer
to convey grating information more frequently and sufficiently
to the hidden layer. This is a result of their short silent period



17204 IEEE SENSORS JOURNAL, VOL. 24, NO. 10, 15 MAY 2024

Fig. 12. Impact of increasing the indentation force (F) on the output raw signal and the encoding procedure (response of SA-I and RA-I
mechanoreceptors). Grating 1 (pitch size = 4 mm) is considered in this illustration. Left: Graphical illustration of increasing the indentation force
procedure during data collection. Middle: Output raw signals of the eight PVDF sensors. Right: Raster plot of the eight SA-I and eight RA-I modeled
mechanoreceptors. Row 1: Force = 3 N. Row 2: Force = 6 N. Row 3: Force = 12 N. Each force is accompanied by v1 = 8.6 mm/s.

Fig. 13. Checking the persistence of the trade-off achieved in
step 1 using the selected networks in step 2. He shaded area represents
the difference between the initial and selected networks.

after spike emission, as depicted in Fig. 4(a). Nonetheless, this
comes with the cost of a high number of SOPs. On the other
side, the combinations with low spiking activity (i.e., 10&10,
5&10) yield the worst classification accuracy, due to the long
silent period after spike emission leading to information loss
[see Fig. 4(c)]. For example, the best classification accuracy in
Dv1,mix (i.e., acc = 90.2%), Dv2,mix (i.e., acc = 92.1%), and
Dvmixed (i.e., acc = 86.7%) corresponds to the combination
1&1 with Ni = 40, Ni = 40, and Ni = 30 neurons in the
hidden layer, respectively. However, it is characterized by a
high number of SOPs that affect future real-time deployment
on a hardware device (i.e., increase inference time and power
consumption during real-time classification). Alternatively, the
worst performance in accuracy is coupled with combinations
10&10 and 5&10, resulting in a decrease of ≈15% and ≈10%,
respectively.

Considering the two evaluation metrics (i.e., accuracy and
computational cost), it is evident that the optimal combinations

TABLE V
OPTIMIZED TIME STEPS (TIME_NEW) AND PATIENCE VALUE FOR THE

CHOSEN COMBINATIONS

of tref presenting the best trade-off among the rest are those
employing 5&5 and 1&10. For instance, the best-achieved
accuracy by the 5&5 combination is 85.3% with Ni = 30 in
Dv1,mix, 84.2% with Ni = 40 in Dv2,mix, and 81.4% with
Ni = 30 in Dmixed. Moreover, in comparison to the 1&1
combination, the average percentage of the SOPs drops by ≈

28% (±9%), ≈28.2% (±7%), and ≈26% (±2%), respectively.
Additionally, the 1&10 combination exhibits a comparable
behavior to the 5&5, but with a slight drop in both the average
accuracy (∼1% in Dv1,mix, ≈3% in Dv2,mix, and ≈2% in
Dmixed) and the average percentage of computational cost
≈14% (±2%) in Dv1,mix , ≈10% (±4%) in Dv2,mix, and ≈13%
(±7%) in Dmixed).

We re-assessed the input sizes T examined in Section VI-A
(employing Dmixed) utilizing the chosen networks to validate
the persistence of the trade-off achieved in Step 1 (see Fig. 7).
Fig. 13 demonstrates the evaluation results. Both RSNNs,
{5&5, Ni = 30} and {1&10, Ni = 30}, exhibit a consistent
trend observed in step 1 (see Fig. 8). For the former, the
network exhibited a drop of 3% in accuracy and a gain of 9.3%
in computational cost compared to the evaluation done with
200-ms input duration. Similarly, the latter network showed a
3.8% decrease in accuracy and a 9.9% gain in computational
cost. Therefore, the trade-off achieved in step 1 persists.

2) Reducing Inference tsteps: After checking the validation
of Tmin, we applied the final optimization method on the
selected RSNNs, {5&5, Ni = 30} and {1&10, Ni = 30},
to reduce their inference tsteps as described in Section IV-B.
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Table V depicts the optimized number of time steps, which are
considered to be sufficient during the inference to maintain the
same classification accuracy. The standard deviation coupled
with the time steps represents the disparity among the samples
in the testing set. The proposed method succeeded in saving
remarkable but varying time steps for each combination dur-
ing the inference. As illustrated, and based on the adopted
Tmin = 150 ms (300 time steps), the network linked to
the 5&5 combination requires 220 time steps to retain the
same classification accuracy, resulting in a saving rate of
26.6%. Similarly, the network associated with 1&10 requires
238 time steps, achieving a reduction rate of 20.6%. Moreover,
to preserve the original classification accuracy, the proposed
method was tuned with a patience value of 120 time steps for
both networks.

In total, the proposed system paves the way toward a
real-time hardware deployment to perform online classifi-
cation with minimal use of hardware resources due to the
implemented optimization methods. The future work involves
deploying the selected networks on a dedicated neuromorphic
device (i.e., Intel Loihi2 chip [34]) to present an end-to-
end neuromorphic system for tactile texture classification,
with event-based and asynchronous communication, and spike-
based computing. A drawback in our approach is that the
proposed system was evaluated under controlled experimental
conditions, specifically utilizing known indentation force and
sliding velocity values commonly found in the literature. How-
ever, it is essential to note that in real-world scenarios, these
conditions are often both unknown and unstable. Therefore,
another future goal is to transition the experimental data
collection conditions to a more realistic environment, simu-
lating to a certain extent, real application scenarios. Further
research endeavors could focus on exploring the versatility
of this neuromorphic tactile system through the investiga-
tion of diverse tactile applications. These may include tasks
such as stiffness and hardness classification, and objection
recognition. In light of the hard constraints required for
real-time inferences in prosthetic and robotic applications,
the proposed neuromorphic tactile sensing system stands as
a suitable candidate for integration. A potential scenario for
utilizing it can be by mapping the real-time event-driven
inferences to feedback or control-based systems for rapid
and efficient post-processing closed-loop scenarios, such as
safe and proper interaction with the environment. Another
possible scenario can be employing the spikes emitted by
the modeled mechanoreceptors (SA-I and RA-I) from the raw
signals of our PVDF-based sensing system in human-in-the-
loop psychophysical experiments. This could be achieved by
mapping the spikes or their associated features to a feedback
system for the user. This would allow exploiting the frequency
range of such sensing systems, in exploring the somatosensory
system activity such as information encoding and decoding as
done in [59].

VII. CONCLUSION

In this article, we presented a neuromorphic tactile sensing
system designed for textural features classification. The core
of our system lies in its capability to directly handle raw

signals obtained from our PVDF-based sensing system. This
eliminates the need for feature extraction to perform classi-
fication, thereby addressing the challenges highlighted in the
literature. To achieve this, we modeled the firing dynamic of
the SA-I and RA-I mechanoreceptors, encoding both transient
and static information applied to the sensors, to spikes carrying
spatiotemporal features. Subsequently, the emitted spikes are
conveyed to an RSNN, trained using the SGD to perform
inferences and classification. We proposed an optimization
method to the RSNN based on tuning tref during the encoding
phase, to impose a trade-off between computational cost and
classification accuracy. We found that two RSNNs {5&5, Ni =

30} and {1&10, Ni = 30} achieved the best trade-off among
the rest of the evaluated combinations (see Section VI-C),
making them a favorable candidate for real-time deployment
and inferences. Following this, we reduced the inference time
steps tsteps of these networks through a rate-coding-based
approach for further optimization. The method detects the
neuron with the highest spike count in the readout layer
through an adaptable patience value (see Section IV-B). The
proposed method succeeded in saving 26.6% and 20.6% out of
the total time steps for the {5&5, Ni = 30} and {1&10, Ni =

30} networks, respectively. The main conclusion that can be
elicited from this study is the feasibility of relying on insights
from neuroscience (i.e., refractory period of spiking neurons)
to develop an elaboration system that fits the constraints of
real-time applications. In particular, and as demonstrated in
our work, the refractory period influences the spiking activity,
making it an interesting parameter that can be leveraged
by neuromorphic devices, which predominantly depend on
spike-driven communication for inferences.
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