1,215 research outputs found

    The Chandra Dust Scattering Halo of Galactic Center transient Swift J174540.7-290015

    Get PDF
    We report the detection of a dust scattering halo around a recently discovered X-ray transient, Swift J174540.7-290015, which in early February of 2016 underwent one of the brightest outbursts (F_X ~ 5e-10 erg/cm^2/s) observed from a compact object in the Galactic Center field. We analyze four Chandra images that were taken as follow-up observations to Swift discoveries of new Galactic Center transients. After adjusting our spectral extraction for the effects of detector pileup, we construct a point spread function for each observation and compare it to the GC field before the outburst. We find residual surface brightness around Swift J174540.7-290015, which has a shape and temporal evolution consistent with the behavior expected from X-rays scattered by foreground dust. We examine the spectral properties of the source, which shows evidence that the object transitioned from a soft to hard spectral state as it faded below L_X ~ 1e36 erg/s. This behavior is consistent with the hypothesis that the object is a low mass X-ray binary in the Galactic Center.Comment: Accepted for publication in Ap

    Development of a regional GPS-based ionospheric TEC model for South Africa

    Get PDF
    Advances in South African space physics research and related disciplines require better spatial and time resolution ionospheric information than was previously possible with the existing ionosonde network. A GPS-based, variable degree adjusted spherical harmonic (ASHA) model was developed for near real-time regional ionospheric total electron content (TEC) mapping over South Africa. Slant TEC values along oblique GPS signal paths are quantified from a network of GPS receivers and converted to vertical TEC by means of the single layer mapping function. The ASHA model coefficients and GPS differential biases are estimated from vertical TEC at the ionospheric pierce points and used to interpolate TEC at any location within the region of interest. Diurnal TEC variations with one minute time resolution and time-varying 2D regional TEC maps are constructed. In order to validate the ASHA method, simulations with an IRI ionosphere were performed, while the ASHA results from actual data were compared with two independent GPS-based methodologies and measured ionosonde data

    Pinkeye of cattle

    Get PDF
    1 online resource (PDF, 4 pages)This archival publication may not reflect current scientific knowledge or recommendations. Current information available from the University of Minnesota Extension: https://www.extension.umn.edu

    Footrot of cattle

    Get PDF
    1 online resource (PDF, 2 pages)This archival publication may not reflect current scientific knowledge or recommendations. Current information available from the University of Minnesota Extension: https://www.extension.umn.edu

    Simultaneous Multi-band Radio & X-ray Observations of the Galactic Center Magnetar SGR 1745-2900

    Get PDF
    We report on multi-frequency, wideband radio observations of the Galactic Center magnetar (SGR 1745-2900) with the Green Bank Telescope for \sim100 days immediately following its initial X-ray outburst in April 2013. We made multiple simultaneous observations at 1.5, 2.0, and 8.9 GHz, allowing us to examine the magnetar's flux evolution, radio spectrum, and interstellar medium parameters (such as the dispersion measure (DM), the scattering timescale and its index). During two epochs, we have simultaneous observations from the Chandra X-ray Observatory, which permitted the absolute alignment of the radio and X-ray profiles. As with the two other radio magnetars with published alignments, the radio profile lies within the broad peak of the X-ray profile, preceding the X-ray profile maximum by \sim0.2 rotations. We also find that the radio spectral index γ\gamma is significantly negative between \sim2 and 9 GHz; during the final \sim30 days of our observations γ1.4\gamma \sim -1.4, which is typical of canonical pulsars. The radio flux has not decreased during this outburst, whereas the long-term trends in the other radio magnetars show concomitant fading of the radio and X-ray fluxes. Finally, our wideband measurements of the DMs taken in adjacent frequency bands in tandem are stochastically inconsistent with one another. Based on recent theoretical predictions, we consider the possibility that the dispersion measure is frequency-dependent. Despite having several properties in common with the other radio magnetars, such as LX,qui/Lrot1L_{\textrm{X,qui}}/L_{\textrm{rot}} \lesssim 1, an increase in the radio flux during the X-ray flux decay has not been observed thus far in other systems.Comment: 15 pages, 9 figures, 3 tables; accepted to Ap

    A tree-decomposed transfer matrix for computing exact Potts model partition functions for arbitrary graphs, with applications to planar graph colourings

    Get PDF
    Combining tree decomposition and transfer matrix techniques provides a very general algorithm for computing exact partition functions of statistical models defined on arbitrary graphs. The algorithm is particularly efficient in the case of planar graphs. We illustrate it by computing the Potts model partition functions and chromatic polynomials (the number of proper vertex colourings using Q colours) for large samples of random planar graphs with up to N=100 vertices. In the latter case, our algorithm yields a sub-exponential average running time of ~ exp(1.516 sqrt(N)), a substantial improvement over the exponential running time ~ exp(0.245 N) provided by the hitherto best known algorithm. We study the statistics of chromatic roots of random planar graphs in some detail, comparing the findings with results for finite pieces of a regular lattice.Comment: 5 pages, 3 figures. Version 2 has been substantially expanded. Version 3 shows that the worst-case running time is sub-exponential in the number of vertice

    The X-ray outburst of the Galactic Center magnetar over six years of Chandra observations

    Full text link
    The magnetar SGR J1745-2900 discovered at parsecs distance from the Milky Way central black hole, Sagittarius A*, represents the closest pulsar to a supermassive black hole ever detected. Furthermore, its intriguing radio emission has been used to study the environment of the black hole, as well as to derive a precise position and proper motion for this object. The discovery of SGR J1745-2900 has opened interesting debates about the number, age and nature of pulsars expected in the Galactic center region. In this work, we present extensive X-ray monitoring of the outburst of SGR J1745-2900 using the Chandra X-ray Observatory, the only instrument with the spatial resolution to distinguish the magnetar from the supermassive black hole (2.4" angular distance). It was monitored from its outburst onset in April 2013 until August 2019, collecting more than fifty Chandra observations for a total of more than 2.3 Ms of data. Soon after the outburst onset, the magnetar emission settled onto a purely thermal emission state that cooled from a temperature of about 0.9 to 0.6 keV over 6 years. The pulsar timing properties showed at least two changes in the period derivative, increasing by a factor of about 4 during the outburst decay. We find that the long-term properties of this outburst challenge current models for the magnetar outbursts.Comment: 11 pages, 6 figures. Accepted by Ap

    The X-ray outburst of the Galactic Centre magnetar SGR J1745-2900 during the first 1.5 year

    Get PDF
    In 2013 April a new magnetar, SGR 1745-2900, was discovered as it entered an outburst, at only 2.4 arcsec angular distance from the supermassive black hole at the Centre of the Milky Way, Sagittarius A*. SGR 1745-2900 has a surface dipolar magnetic field of ~ 2x10^{14} G, and it is the neutron star closest to a black hole ever observed. The new source was detected both in the radio and X-ray bands, with a peak X-ray luminosity L_X ~ 5x10^{35} erg s^{-1}. Here we report on the long-term Chandra (25 observations) and XMM-Newton (8 observations) X-ray monitoring campaign of SGR 1745-2900, from the onset of the outburst in April 2013 until September 2014. This unprecedented dataset allows us to refine the timing properties of the source, as well as to study the outburst spectral evolution as a function of time and rotational phase. Our timing analysis confirms the increase in the spin period derivative by a factor of ~2 around June 2013, and reveals that a further increase occurred between 2013 Oct 30 and 2014 Feb 21. We find that the period derivative changed from 6.6x10^{-12} s s^{-1} to 3.3x10^{-11} s s^{-1} in 1.5 yr. On the other hand, this magnetar shows a slow flux decay compared to other magnetars and a rather inefficient surface cooling. In particular, starquake-induced crustal cooling models alone have difficulty in explaining the high luminosity of the source for the first ~200 days of its outburst, and additional heating of the star surface from currents flowing in a twisted magnetic bundle is probably playing an important role in the outburst evolution.Comment: 16 pages, 12 figures; accepted for publication on MNRA

    A strongly magnetized pulsar within grasp of the Milky Way's supermassive black hole

    Full text link
    The center of our Galaxy hosts a supermassive black hole, Sagittarius (Sgr) A*. Young, massive stars within 0.5 pc of SgrA* are evidence of an episode of intense star formation near the black hole a few Myr ago, which might have left behind a young neutron star traveling deep into SgrA*'s gravitational potential. On 2013 April 25, a short X-ray burst was observed from the direction of the Galactic center. Thanks to a series of observations with the Chandra and the Swift satellites, we pinpoint the associated magnetar at an angular distance of 2.4+/-0.3 arcsec from SgrA*, and refine the source spin period and its derivative (P=3.7635537(2) s and \dot{P} = 6.61(4)x10^{-12} s/s), confirmed by quasi simultaneous radio observations performed with the Green Bank (GBT) and Parkes antennas, which also constrain a Dispersion Measure of DM=1750+/-50 pc cm^{-3}, the highest ever observed for a radio pulsar. We have found that this X-ray source is a young magnetar at ~0.07-2 pc from SgrA*. Simulations of its possible motion around SgrA* show that it is likely (~90% probability) in a bound orbit around the black hole. The radiation front produced by the past activity from the magnetar passing through the molecular clouds surrounding the Galactic center region, might be responsible for a large fraction of the light echoes observed in the Fe fluorescence features.Comment: ApJ Letters in pres

    The Chandra High Resolution X-ray Spectrum of Quiescent Emission from Sgr A*

    Get PDF
    In quiescence, Sgr A* is surprisingly dim, shining 100,000 times less than expected for its environment. This problem has motivated a host of theoretical models to explain radiatively inefficient accretion flows (RIAFs). The Chandra Galactic Center (GC) X-ray Visionary Program obtained approximately 3 Ms (one month) of Chandra HETG data, offering the only opportunity to examine the quiescent X-ray emission of Sgr A* with high resolution spectroscopy. Utilizing custom background regions and filters for removing overlapping point sources, this work provides the first ever look at stacked HETG spectra of Sgr A*. We model the background datasets with a cubic spline and fit the unbinned Sgr A* spectra with a simple parametric model of a power law plus Gaussian lines under the effects of interstellar extinction. We detect a strong 6.7 keV iron emission line in the HEG spectra and a 3.1 keV emission line in the MEG spectra. In all cases, the line centroids and equivalent widths are consistent with those measured from low-resolution CCD spectra. An examination of the unbinned, stacked HEG+/-1 spectrum reveals fine structure in the iron line complex. In addition to resolving the resonant and forbidden lines from He-like iron, there are apparent emission features arising with higher statistical significance at lower energy, potentially associated with FeXX-XXIV ions in a ~1 keV plasma arising near the Bondi radius of Sgr A*. With this work, we release the cleaned and stacked Sgr A* and background HETG spectra to the public as a special legacy dataset.Comment: Accepted by Ap
    corecore