97 research outputs found
Detection of flux emergence, splitting, merging, and cancellation of network field. I Splitting and Merging
Frequencies of magnetic patch processes on supergranule boundary, namely flux
emergence, splitting, merging, and cancellation, are investigated through an
automatic detection. We use a set of line of sight magnetograms taken by the
Solar Optical Telescope (SOT) on board Hinode satellite. We found 1636 positive
patches and 1637 negative patches in the data set, whose time duration is 3.5
hours and field of view is 112" \times 112". Total numbers of magnetic
processes are followed: 493 positive and 482 negative splittings, 536 positive
and 535 negative mergings, 86 cancellations, and 3 emergences. Total numbers of
emergence and cancellation are significantly smaller than those of splitting
and merging. Further, frequency dependences of merging and splitting processes
on flux content are investigated. Merging has a weak dependence on flux content
only with a power- law index of 0.28. Timescale for splitting is found to be
independent of parent flux content before splitting, which corresponds to \sim
33 minutes. It is also found that patches split into any flux contents with a
same probability. This splitting has a power-law distribution of flux content
with an index of -2 as a time independent solution. These results support that
the frequency distribution of flux content in the analyzed flux range is
rapidly maintained by merging and splitting, namely surface processes. We
suggest a model for frequency distributions of cancellation and emergence based
on this idea.Comment: 32 pages, 10 figures, 1 table, accepted to Ap
Solar Magnetic Tracking. I. Software Comparison and Recommended Practices
Feature tracking and recognition are increasingly common tools for data
analysis, but are typically implemented on an ad-hoc basis by individual
research groups, limiting the usefulness of derived results when selection
effects and algorithmic differences are not controlled. Specific results that
are affected include the solar magnetic turnover time, the distributions of
sizes, strengths, and lifetimes of magnetic features, and the physics of both
small scale flux emergence and the small-scale dynamo. In this paper, we
present the results of a detailed comparison between four tracking codes
applied to a single set of data from SOHO/MDI, describe the interplay between
desired tracking behavior and parameterization of tracking algorithms, and make
recommendations for feature selection and tracking practice in future work.Comment: In press for Astrophys. J. 200
Solar Magnetic Carpet I: Simulation of Synthetic Magnetograms
This paper describes a new 2D model for the photospheric evolution of the
magnetic carpet. It is the first in a series of papers working towards
constructing a realistic 3D non-potential model for the interaction of
small-scale solar magnetic fields. In the model, the basic evolution of the
magnetic elements is governed by a supergranular flow profile. In addition,
magnetic elements may evolve through the processes of emergence, cancellation,
coalescence and fragmentation. Model parameters for the emergence of bipoles
are based upon the results of observational studies. Using this model, several
simulations are considered, where the range of flux with which bipoles may
emerge is varied. In all cases the model quickly reaches a steady state where
the rates of emergence and cancellation balance. Analysis of the resulting
magnetic field shows that we reproduce observed quantities such as the flux
distribution, mean field, cancellation rates, photospheric recycle time and a
magnetic network. As expected, the simulation matches observations more closely
when a larger, and consequently more realistic, range of emerging flux values
is allowed (4e16 - 1e19 Mx). The model best reproduces the current observed
properties of the magnetic carpet when we take the minimum absolute flux for
emerging bipoles to be 4e16 Mx. In future, this 2D model will be used as an
evolving photospheric boundary condition for 3D non-potential modeling.Comment: 33 pages, 16 figures, 5 gif movies included: movies may be viewed at
http://www-solar.mcs.st-and.ac.uk/~karen/movies_paper1
Transport of magnetic flux from the canopy to the internetwork
Recent observations have revealed that 8% of linear polarization patches in
the internetwork quiet Sun are fully embedded in downflows. These are not
easily explained with the typical scenarios for the source of internetwork
fields which rely on flux emergence from below. We explore using radiative MHD
simulations a scenario where magnetic flux is transported from the magnetic
canopy overlying the internetwork into the photosphere by means of downward
plumes associated with convective overshoot. We find that if a canopy-like
magnetic field is present in the simulation, the transport of flux from the
canopy is an important process for seeding the photospheric layers of the
internetwork with magnetic field. We propose that this mechanism is relevant
for the Sun as well, and it could naturally explain the observed internetwork
linear polarization patches entirely embedded in downflows.Comment: Accepted to Ap
The Fine-Structure of the Net-Circular Polarization in a Sunspot Penumbra
We present novel evidence for a fine structure observed in the net-circular
polarization (NCP) of a sunspot penumbra based on spectropolarimetric
measurements utilizing the Zeeman sensitive FeI 630.2 nm line. For the first
time we detect a filamentary organized fine structure of the NCP on spatial
scales that are similar to the inhomogeneities found in the penumbral flow
field. We also observe an additional property of the visible NCP, a
zero-crossing of the NCP in the outer parts of the center-side penumbra, which
has not been recognized before. In order to interprete the observations we
solve the radiative transfer equations for polarized light in a model penumbra
with embedded magnetic flux tubes. We demonstrate that the observed
zero-crossing of the NCP can be explained by an increased magnetic field
strength inside magnetic flux tubes in the outer penumbra combined with a
decreased magnetic field strength in the background field. Our results strongly
support the concept of the uncombed penumbra
The three-dimensional structure of sunspots II. The moat flow at two different heights
Many sunspots are surrounded by a radial outflow called the moat flow. We
investigate the moat flow at two different heights of the solar atmosphere for
a sunspot whose magnetic properties were reported in the first paper of this
series. We use two simultaneous time series taken with the Transition Region
And Coronal Explorer (TRACE) in white light and in the UV at 170 nm. The
field-of-view is centered on the small sunspot NOAA 10886 located near disk
center. Horizontal velocities are derived by applying two different local
correlation tracking techniques. Outflows are found everywhere in the moat. In
the inner moat, the velocities from the UV series are larger than those from
white light, whereas in the outer part of the moat we find the converse result.
The results imply that the white light velocities represent a general outflow
of the quiet sun plasma in the moat, while UV velocities are dominated by small
bright points that move faster than the general plasma flow.Comment: Manuscript accepted by Astronomy & Astrophysic
Small scale energy release driven by supergranular flows on the quiet Sun
In this article we present data and modelling for the quiet Sun that strongly suggest a ubiquitous small-scale atmospheric heating mechanism that is driven solely by converging supergranular flows.
A possible energy source for such events is the power transfer to the plasma via the work done on the magnetic field by photospheric convective flows, which exert drag of the footpoints of magnetic structures. In this paper we present evidence of small scale energy release events driven directly by the hydrodynamic forces that act on the magnetic elements in the photosphere, as a result of supergranular scale flows. We show strong spatial and temporal correlation between quiet Sun soft X-ray emission (from <i>Yohkoh</i> and <i>SOHO</i> MDI-derived flux removal events driven by deduced photospheric flows.
We also present a simple model of heating generated by flux submergence, based on particle acceleration by converging magnetic mirrors.
In the near future, high resolution soft X-ray images from XRT on the <i>Hinode</i> satellite will allow definitive, quantitative verification of our results
Horizontal flow fields observed in Hinode G-band images II. Flow fields in the final stages of sunspot decay
We present a subset of multi-wavelengths observations obtained with the
Japanese Hinode mission, the Solar Dynamics Observatory (SDO), and the Vacuum
Tower Telescope (VTT) at Observatorio del Teide, Tenerife, Spain during the
time period from 2010 November 18-23. Horizontal proper motions were derived
from G-band and Ca II H images, whereas line-of-sight velocities were extracted
from VTT Echelle H-alpha 656.28 nm spectra and Fe I 630.25 nm spectral data of
the Hinode/Spectro-Polarimeter, which also provided three-dimensional magnetic
field information. The Helioseismic and Magnetic Imager on board SDO provided
continuum images and line-of-sight magnetograms as context for the
high-resolution observations for the entire disk passage of the active region.
We have performed a quantitative study of photospheric and chromospheric flow
fields in and around decaying sunspots. In one of the trailing sunspots of
active region NOAA 11126, we observed moat flow and moving magnetic features
(MMFs), even after its penumbra had decayed. We also noticed a superpenumbral
structure around this pore. MMFs follow well-defined, radial paths from the
spot all the way to the border of a supergranular cell surrounding the spot. In
contrast, flux emergence near the other sunspot prevented it from establishing
such well ordered flow patterns, which could even be observed around a tiny
pore of just 2 Mm diameter. After the disappearance of the sunspots/pores a
coherent patch of abnormal granulation remained at their location, which was
characterized by more uniform horizontal proper motions, low divergence values,
and diminished photospheric Doppler velocities. This region, thus, differs
significantly from granulation and other areas covered by G-band bright points.
We conclude that this peculiar flow pattern is a signature of sunspot decay and
the dispersal of magnetic flux.Comment: 13 pages, 11 figures, accepted for publication in Astronomy and
Astrophysic
- …