242 research outputs found

    On the Classification of UGC1382 as a Giant Low Surface Brightness Galaxy

    Get PDF
    We provide evidence that UGC1382, long believed to be a passive elliptical galaxy, is actually a giant low surface brightness (GLSB) galaxy which rivals the archetypical GLSB Malin 1 in size. Like other GLSB galaxies, it has two components: a high surface brightness disk galaxy surrounded by an extended low surface brightness (LSB) disk. For UGC1382, the central component is a lenticular system with an effective radius of 6 kpc. Beyond this, the LSB disk has an effective radius of ~38 kpc and an extrapolated central surface brightness of ~26 mag/arcsec^2. Both components have a combined stellar mass of ~8x10^10 M_sun, and are embedded in a massive (10^10 M_sun) low-density (<3 M_sun/pc^2) HI disk with a radius of 110 kpc, making this one of the largest isolated disk galaxies known. The system resides in a massive dark matter halo of at least 2x10^12 M_sun. Although possibly part of a small group, its low density environment likely plays a role in the formation and retention of the giant LSB and HI disks. We model the spectral energy distributions and find that the LSB disk is likely older than the lenticular component. UGC1382 has UV-optical colors typical of galaxies transitioning through the green valley. Within the LSB disk are spiral arms forming stars at extremely low efficiencies. The gas depletion time scale of ~10^11 yr suggests that UGC1382 may be a very long term resident of the green valley. We find that the formation and evolution of the LSB disk is best explained by the accretion of gas-rich LSB dwarf galaxies.Comment: 17 pages, 16 figures, 4 tables; accepted to the Astrophysical Journa

    The Search for Effective Algorithms for Recovery from Loss of Separation

    Get PDF
    Our previous work presented an approach for developing high confidence algorithms for recovering aircraft from loss of separation situations. The correctness theorems for the algorithms relied on several key assumptions, namely that state data for all local aircraft is perfectly known, that resolution maneuvers can be achieved instantaneously, and that all aircraft compute resolutions using exactly the same data. Experiments showed that these assumptions were adequate in cases where the aircraft are far away from losing separation, but are insufficient when the aircraft have already lost separation. This paper describes the results of this experimentation and proposes a new criteria specification for loss of separation recovery that preserves the formal safety properties of the previous criteria while overcoming some key limitations. Candidate algorithms that satisfy the new criteria are presented

    Identification of a panel of sensitive and specific DNA methylation markers for lung adenocarcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lung cancer is the number one cancer killer of both men and women in the United States. Three quarters of lung cancer patients are diagnosed with regionally or distantly disseminated disease; their 5-year survival is only 15%. DNA hypermethylation at promoter CpG islands shows great promise as a cancer-specific marker that would complement visual lung cancer screening tools such as spiral CT, improving early detection. In lung cancer patients, such hypermethylation is detectable in a variety of samples ranging from tumor material to blood and sputum. To date the penetrance of DNA methylation at any single locus has been too low to provide great clinical sensitivity. We used the real-time PCR-based method MethyLight to examine DNA methylation quantitatively at twenty-eight loci in 51 primary human lung adenocarcinomas, 38 adjacent non-tumor lung samples, and 11 lung samples from non-lung cancer patients.</p> <p>Results</p> <p>We identified thirteen loci showing significant differential DNA methylation levels between tumor and non-tumor lung; eight of these show highly significant hypermethylation in adenocarcinoma: CDH13, CDKN2A EX2, CDX2, HOXA1, OPCML, RASSF1, SFPR1, and TWIST1 (p-value << 0.0001). Using the current tissue collection and 5-fold cross validation, the four most significant loci (CDKN2A EX2, CDX2, HOXA1 and OPCML) individually distinguish lung adenocarcinoma from non-cancer lung with a sensitivity of 67–86% and specificity of 74–82%. DNA methylation of these loci did not differ significantly based on gender, race, age or tumor stage, indicating their wide applicability as potential lung adenocarcinoma markers. We applied random forests to determine a good classifier based on a subset of our loci and determined that combined use of the same four top markers allows identification of lung cancer tissue from non-lung cancer tissue with 94% sensitivity and 90% specificity.</p> <p>Conclusion</p> <p>The identification of eight CpG island loci showing highly significant hypermethylation in lung adenocarcinoma provides strong candidates for evaluation in patient remote media such as plasma and sputum. The four most highly ranked loci, CDKN2A EX2, CDX2, HOXA1 and OPCML, which show significant DNA methylation even in stage IA tumor samples, merit further investigation as some of the most promising lung adenocarcinoma markers identified to date.</p

    Parametric Analysis of Surveillance Quality and Level and Quality of Intent Information and Their Impact on Conflict Detection Performance

    Get PDF
    A loss-of-separation (LOS) is said to occur when two aircraft are spatially too close to one another. A LOS is the fundamental unsafe event to be avoided in air traffic management and conflict detection (CD) is the function that attempts to predict these LOS events. In general, the effectiveness of conflict detection relates to the overall safety and performance of an air traffic management concept. An abstract, parametric analysis was conducted to investigate the impact of surveillance quality, level of intent information, and quality of intent information on conflict detection performance. The data collected in this analysis can be used to estimate the conflict detection performance under alternative future scenarios or alternative allocations of the conflict detection function, based on the quality of the surveillance and intent information under those conditions.Alternatively, this data could also be used to estimate the surveillance and intent information quality required to achieve some desired CD performance as part of the design of a new separation assurance system

    Conflict Detection Performance Analysis for Function Allocation Using Time-Shifted Recorded Traffic Data

    Get PDF
    The performance of the conflict detection function in a separation assurance system is dependent on the content and quality of the data available to perform that function. Specifically, data quality and data content available to the conflict detection function have a direct impact on the accuracy of the prediction of an aircraft's future state or trajectory, which, in turn, impacts the ability to successfully anticipate potential losses of separation (detect future conflicts). Consequently, other separation assurance functions that rely on the conflict detection function - namely, conflict resolution - are prone to negative performance impacts. The many possible allocations and implementations of the conflict detection function between centralized and distributed systems drive the need to understand the key relationships that impact conflict detection performance, with respect to differences in data available. This paper presents the preliminary results of an analysis technique developed to investigate the impacts of data quality and data content on conflict detection performance. Flight track data recorded from a day of the National Airspace System is time-shifted to create conflicts not present in the un-shifted data. A methodology is used to smooth and filter the recorded data to eliminate sensor fusion noise, data drop-outs and other anomalies in the data. The metrics used to characterize conflict detection performance are presented and a set of preliminary results is discussed

    Pregnancy Induces Persistent Changes that Potentiate Apoptotic Signaling and Responses to DNA Damage

    Get PDF
    A full-term pregnancy reduces the lifetime risk of breast cancer by up to 50%. This effect is mediated, in part, by p53-dependent pathways. Gene expression profiling was used to investigate the mechanisms that alter apoptotic responses to DNA damage in the mammary gland. Radiation-induced responses in BALB/c-Trp53+/+ and BALB/c-Trp53-/- mice identified 121 genes that were altered by radiation and p53 status (p53-IR). To determine the effect of parity, mice were mated, force-weaned and mammary glands were allowed to involute for 21 days (parous) and compared with age-matched nulliparous mice. Gene expression profiles were determined in mammary tissues from nulliparous (N), parous (P), irradiated nulliparous (N-IR) and irradiated parous (P-IR) mice. The p53-IR gene signature did not differ among the N-IR and P-IR groups indicating that transcriptional activity of p53 was not altered by parity. However, expression profiles of apoptosis-related genes differed significantly in the parous group. The alterations in parous mammary tissues was accompanied by over-representation of biological processes that included “signal transduction” (e=1.69E-05). Within this set, Wnt signaling was especially pronounced (e Parity-regulated genes collaborate with p53-dependent targets, which act as a “switch”, to elicit apoptosis following ionizing radiation. The epigenetic states of the parity-regulated genes Tgfb2 and Wnt5a provide a mechanism for the persistent alterations in gene expression and apoptosis in parous mammary epithelial cells

    Space Shuttle Orbiter Structures and Mechanisms

    Get PDF
    The Space Shuttle Orbiter has performed exceptionally well over its 30 years of flight experience. Among the many factors behind this success were robust, yet carefully monitored, structural and mechanical systems. From highlighting key aspects of the design to illustrating lessons learned from the operation of this complex system, this paper will attempt to educate the reader on why some subsystems operated flawlessly and why specific vulnerabilities were exposed in others. Specific areas to be covered will be the following: high level configuration overview, primary and secondary structure, mechanical systems ranging from landing gear to the docking system, and windows

    Exact Solutions for the Intrinsic Geometry of Black Hole Coalescence

    Get PDF
    We describe the null geometry of a multiple black hole event horizon in terms of a conformal rescaling of a flat space null hypersurface. For the prolate spheroidal case, we show that the method reproduces the pair-of-pants shaped horizon found in the numerical simulation of the head-on-collision of black holes. For the oblate case, it reproduces the initially toroidal event horizon found in the numerical simulation of collapse of a rotating cluster. The analytic nature of the approach makes further conclusions possible, such as a bearing on the hoop conjecture. From a time reversed point of view, the approach yields a description of the past event horizon of a fissioning white hole, which can be used as null data for the characteristic evolution of the exterior space-time.Comment: 21 pages, 6 figures, revtex, to appear in Phys. Rev.

    Identification of a panel of sensitive and specific DNA methylation markers for squamous cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lung cancer is the leading cause of cancer death in men and women in the United States and Western Europe. Over 160,000 Americans die of this disease every year. The five-year survival rate is 15% – significantly lower than that of other major cancers. Early detection is a key factor in increasing lung cancer patient survival. DNA hypermethylation is recognized as an important mechanism for tumor suppressor gene inactivation in cancer and could yield powerful biomarkers for early detection of lung cancer. Here we focused on developing DNA methylation markers for squamous cell carcinoma of the lung. Using the sensitive, high-throughput DNA methylation analysis technique MethyLight, we examined the methylation profile of 42 loci in a collection of 45 squamous cell lung cancer samples and adjacent non-tumor lung tissues from the same patients.</p> <p>Results</p> <p>We identified 22 loci showing significantly higher DNA methylation levels in tumor tissue than adjacent non-tumor lung. Of these, eight showed highly significant hypermethylation in tumor tissue (p < 0.0001): GDNF, MTHFR, OPCML, TNFRSF25, TCF21, PAX8, PTPRN2 and PITX2. Used in combination on our specimen collection, this eight-locus panel showed 95.6% sensitivity and specificity.</p> <p>Conclusion</p> <p>We have identified 22 DNA methylation markers for squamous cell lung cancer, several of which have not previously been reported to be methylated in any type of human cancer. The top eight markers show great promise as a sensitive and specific DNA methylation marker panel for squamous cell lung cancer.</p
    corecore