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The performance of the conflict detection function in a separation assurance system is 

dependent on the content and quality of the data available to perform that function.  

Specifically, data quality and data content available to the conflict detection function have a 

direct impact on the accuracy of the prediction of an aircraft’s future state or trajectory, 

which, in turn, impacts the ability to successfully anticipate potential losses of separation 

(detect future conflicts).  Consequently, other separation assurance functions that rely on the 

conflict detection function – namely, conflict resolution – are prone to negative performance 

impacts.  The many possible allocations and implementations of the conflict detection 

function between centralized and distributed systems drive the need to understand the key 

relationships that impact conflict detection performance, with respect to differences in data 

available.  This paper presents the preliminary results of an analysis technique developed to 

investigate the impacts of data quality and data content on conflict detection performance.  

Flight track data recorded from a day of the National Airspace System is time-shifted to 

create conflicts not present in the un-shifted data. A methodology is used to smooth and 

filter the recorded data to eliminate sensor fusion noise, data drop-outs and other anomalies 

in the data.  The metrics used to characterize conflict detection performance are presented 

and a set of preliminary results is discussed.  

Nomenclature 

𝑎𝑙𝑡  =  altitude, as a function of time 

𝑪  = single conflict or conflict set, true 

�̂�  = single conflict or conflict set, predicted 

𝒅𝐺𝐶𝐷   = great-circle distance function 

𝐷𝐻   = horizontal distance 

𝐷𝑉  = vertical distance 

𝛿𝑡  = time value for conflict comparison criteria 

𝛿𝐻  = horizontal distance value for conflict comparison criteria 

𝛿𝑉  = vertical distance value for conflict comparison criteria 

∆𝑡𝐿𝑂𝑆  = relative time-to entry into loss-of-separation 

∆𝑡𝐿𝑂𝑆,𝑚𝑒𝑎𝑛 = mean time-to loss-of-separation at first detection 

∆𝑡𝑡𝑟𝑎𝑗  = track data and trajectory prediction time interval 

𝜺  =  component error vector 

𝒇𝐺𝐶𝐷  = great-circle projection function 

𝑔𝑠  =  groundspeed, as a function of time 

𝐻𝑠𝑒𝑝  = horizontal separation criterion 

𝑙𝑎𝑡  = latitudinal position, as a function of time 

𝑙𝑜𝑛  = longitudinal position, as a function of time 

𝑁�̂�  = number of predicted conflicts 
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𝑁𝑪  = number of true conflicts 

𝑁𝑪,𝑠𝑖𝑚  = number of true losses-of-separation in one simulation run 

𝑁𝐹𝐴  = number of false conflict alerts 

𝑁𝑀𝐴  = number of missed conflict alerts 

𝑁𝑀𝐷  = number of loss-of-separation missed detections 

𝑃𝐹𝐴  = probability of false alert 

𝑃𝑀𝐴  = probability of missed alert 

𝑃𝑀𝐷   = probability of missed detection 

𝑅𝑠  = surveillance range 

𝒔  = position state vector 

�̂�  = position state vector estimate 

𝜎𝑟  = surveillance horizontal position error standard deviation 

𝜎𝑎  = surveillance altitude error standard deviation 

𝜎𝑔𝑠  = surveillance groundspeed error standard deviation 

𝜎𝑣𝑠  = surveillance vertical speed error standard deviation 

𝜎𝑡𝑟𝑘  = surveillance track angle error standard deviation 

𝑡  = time 

𝑻  = true trajectory 

�̂�  = predicted trajectory 

𝑡𝑐𝑑  =  conflict detection time 

𝑇𝑑𝑒𝑡  = conflict detection cycle period 

𝑡𝐿𝑂𝑆  =  time at entry into loss-of-separation 

𝑇𝑝𝑟𝑒𝑑  = time horizon for trajectory prediction and conflict detection 

𝑡𝑠  =  surveillance time 

𝑡𝑠ℎ𝑖𝑓𝑡,𝑚𝑎𝑥  = maximum track time shift 

𝑡𝑠𝑙  = surveillance lag time 

𝑡𝑟𝑘  = track angle, as a function of time 

𝒗  = velocity state vector 

�̂�  = velocity state vector estimate 

𝑣𝑠  = vertical speed, as a function of time 

𝑉𝑠𝑒𝑝  = vertical separation criterion 

I. Introduction 

NASA has an extensive history of research in separation assurance (SA) concepts and technologies1.  Over the past 

few years, this work has been focused on demonstrating the feasibility, and characterizing the performance of, 

various separation assurance function allocation concepts. Function allocation refers to the assignment of the 

separation assurance functions between humans and automation and between airborne or ground-based systems.  

The current focus under Function Allocation at NASA is to take a broader approach to the separation assurance 

function allocation problem by developing the ability to make early recommendations about various allocation 

architectures.  Using a system-level analysis that leverages knowledge acquired under prior work as well as new 

fundamental relationships for the performance of the SA functions under different allocation environments, NASA 

will be able to provide recommendations about the separation assurance function allocation architectures with the 

highest benefit potential under different future scenarios.  

A set of fundamental relationships that describe the performance of the conflict detection (CD) function under 

different data environments is needed.  In separation assurance systems, the conflict detection function is critical to 

the overall system performance because the conflict resolution function necessarily relies on a conflict detection 

function to compute conflict-free resolution maneuvers.  A set of relationships that characterize the performance of 

the conflict detection function, independent from conflict resolution, in terms of the fundamental differences 

between the input parameters will enable the evaluation and comparison of various possible allocations of the 

conflict detection function.  This work is focused on identifying those relationships.   

In this paper, a description of the analysis technique developed to identify the relationships in conflict detection 

performance is provided.  The details of the recorded traffic data used in the analysis and the conditioning that was 

performed on that data are presented.  Preliminary results from the portion of the analysis capability that had been 
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fully integrated at the time this paper was written are presented, including sensitivity of the performance metrics to 

the input parameters.   

II. Background 

Conflict detection performance (the ability to predict potential future losses-of-separation between aircraft) is 

largely driven by the accuracy of trajectory prediction for the future states of an aircraft, and trajectory prediction is 

highly dependent on the quality and content of the data available to the agent performing the prediction.  

Consequently, the allocation of the conflict detection function, assuming co-located trajectory prediction, between 

airborne systems and ground-based systems can also be characterized by the content and quality of the available 

data.  The performance of the conflict detection function is also dependent on the allocation between humans and 

automation; however, this work does not address that impact to performance because there are other NASA research 

activities tasked with characterizing the human-automation axis in more detail.  Specifically, the conflict detection 

performance that is the subject of this work seeks to answer the question: 

 

What are the impacts of surveillance quality and level of intent on conflict detection performance? 

 

An extensive body of work exists in the literature with respect to trajectory prediction2,3 and conflict detection.4-6 

A large portion of prior work is focused on the design of conflict detection algorithms and the performance of those 

implementations in simulation.  Additionally, a significant amount of work has been done to study the human 

performance in the face of different conflict alerting systems.7,8   

The performance of various conflict detection and alerting algorithms have been analyzed in prior work.9-13  Of 

particular interest is the work by Paglione9 and Bilimoria.10  Paglione evaluated the performance of the Federal 

Aviation Administration’s (FAA) Host computer detection algorithms while Bilimoria performed a similar 

evaluation for the NASA Center/Tracon Automation System’s (CTAS) detection algorithms.  Prior work has also 

studied conflict detection independent of an algorithm, where research has shown that a conflict detection algorithm 

can be developed that is correct for an arbitrary trajectory within a given approximation bound.14  Regardless of how 

many trajectory-pairs a particular correct algorithm examines, its performance, given the same input data quality and 

data content, will only differ from another correct algorithm by factors such as trajectory prediction sophistication, 

alerting buffers, and other heuristics. 

The impacts of data quality and data content, in terms of surveillance and navigation error15,16 and intent 

availability17-20, have been discussed in prior work in the context of separation assurance.  Chung15 discussed the 

implication of surveillance delays and how those could be used to determine buffers for the trajectory prediction of 

future states while Finkelsztein18 looked at the sensitivity of the range at closest point of approach in a parametric 

analysis.   

The investigation of prior work in the area of conflict detection performance revealed that more work is needed 

to provide the architecture-agnostic and broadly-applicable characterization of conflict detection performance that 

will support the Function Allocation system-level assessment.  In much of the prior work, it is difficult to separate 

the performance of the entire SA system, which is typically concerned with observed losses-of-separation, from the 

performance of conflict detection alone, which is typically characterized by false and missed alert rates.  Prior work 

consisted of algorithm design, human factors implications, and full SA system performance, whereas this work is 

focused on the performance of the conflict detection function as a function of the quality and content of the input 

data. 

III. Analysis Approach 

Two analysis methods were chosen to answer the question of conflict detection performance.  The first method 

uses trajectory data recorded in the National Airspace System (NAS) and time-shifting to create losses-of-separation 

that were not present in the subject traffic day.  This is the method discussed in more detail in this paper.  The 

second method uses a canonical “circular scenario” approach to simulate aircraft traversing a subject region of 

airspace.  Each analysis method has its own advantages and disadvantages but their results are expected to be 

complimentary.  This second analysis method, as well as comparison of results from the two methods, will be the 

subject of future publications.   

A time-shifted, recorded traffic set has many advantages for conflict detection analysis.  Recorded traffic data 

has the trajectory complexity present in the current system that is typically hard to model in simulation, such as step-

climbs or step-descents.  Realistic turn and climb performance for various aircraft at various flying conditions is 

afforded by these recorded trajectories.  No trajectory generator is required to fly the recorded trajectories, which 
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reduces complexity and improves computational speed.  However, recorded traffic data does add challenges, such as 

surveillance error and data fusion issues that need to be addressed before the data can be used for analysis. 

The analysis method for this work involves simulating a set of traffic scenarios, while varying a defined set of 

parameters, to evaluate the performance of the conflict detection function.  Trajectory prediction and conflict 

detection are exercised at specified intervals to predict conflicts between aircraft trajectories and to compute a set of 

performance metrics.  Surveillance quality and level of intent are varied parametrically in the analysis to investigate 

the impacts on conflict detection performance.  Only the analysis capability that had been fully implemented at the 

time of this writing is discussed in this paper.  

A. Definitions and Overview of Conflict Detection  

The review of prior work revealed several different metrics relating to conflict detection but the definitions 

varied.  Those definitions varied, especially with respect to conflict resolution where, for example, a specific loss-of-

separation event may never come to fruition, thereby rendering the idea of a missed detection somewhat unclear. As 

such, it is important to begin with a presentation of the key set of definitions used throughout this paper (Table 1). 

Conflict detection can be defined as the identification of potential future losses-of-separation between any pair of 

aircraft using the predicted future trajectories of those aircraft.  As such, trajectory prediction has a significant 

impact on conflict detection performance.  The sophistication of the prediction, in terms of the content and quality of 

information available to predict a future trajectory, and the resultant accuracy of the prediction can have a significant 

impact in the performance of conflict detection.  For example, a trajectory prediction informed only by the current 

state of an aircraft is likely to be less accurate at predicting that aircraft’s future state than one that has additional 

knowledge of the aircraft’s intent.  Additionally, there is a dimension of trajectory prediction accuracy that is 

associated with the sophistication of the trajectory generator used to compute that prediction.  In this effort, the 

simplest implementation of trajectory prediction that achieves the desired results will be used.  That is, a simple 

linear projection of states will be implemented first, followed by the possible introduction of a kinematic trajectory 

generator that uses acceleration regions to create more realistic turns, with more complexity added as dictated by the 

required maximum level of uncertainty in the results. 

 
 Trajectory propagation methods for conflict detection can be classified as probabilistic, deterministic, and worst-

case.  In a deterministic case, a single trajectory prediction is assumed to have a 100% probability of occurring.  In 

the probabilistic case, a set of trajectory predictions each has a weight or probability of occurring, based on the 

current knowledge.  Finally, a worst-case approach assumes 100% probability on any possible trajectory for an 

aircraft, thereby defining a bounded protected region.  Each of these methods requires its own set of assumptions for 

implementation; the choice can be made based on the use case.  Because of the NAS-wide nature of the results being 

sought here, and because this study explores other parameter variations in a Monte Carlo approach, the deterministic 

trajectory propagation method was chosen for this work. 

 

 

Table 1. Conflict detection terms and definitions. 

Term Definition 

loss(es)-of-separation (LOS) violation(s) of the minimum separation criteria between two aircraft trajectories 

separation criteria vertical and horizontal distances that identify the boundary for a LOS event 

between two trajectories 

conflict two aircraft are in conflict if there exists a time, t, with a LOS in their true or 

predicted trajectories 

detection the identification of a true LOS event 

true conflict a conflict that exists between the true trajectories of two aircraft and that is 

within the conflict detection horizon, in the absence of a resolution maneuver 

predicted conflict a conflict that exists between the predicted trajectories of two aircraft and that is 

within the conflict detection horizon 

alert a warning provided by the conflict detector 

false alert (FA) an alert regarding a LOS that is not present in the true aircraft trajectories within 

the conflict detection horizon 

missed alert (MA) the lack of an alert regarding a LOS that is present in the true aircraft trajectories  

within the conflict detection horizon 

missed detection (MD) over all detection attempts, the absolute failure to detect a true LOS event 
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B. The Analysis Approach  

The conflict detection analysis is comprised of the following primary elements: a track playback/simulation 

framework, a surveillance error model, a trajectory prediction module, and a conflict detection module.  The 

playback framework begins at the start time for the first time-shifted track, increments the simulation time at the CD 

cycle interval (𝑇𝑑𝑒𝑡), and ends when the last time-shifted track has completed.  As each flight is spawned into the 

simulation environment, a surveillance error model adds surveillance error to the track data for that flight.  During 

each simulation cycle (CD cycle), a trajectory prediction is made for each active aircraft that predicts the future state 

of that aircraft up to the trajectory prediction and conflict detection horizon (𝑇𝑝𝑟𝑒𝑑) and conflict detection is 

performed between aircraft pairs that are within the surveillance range specified (𝑅𝑠).  The conflict detection module 

returns a set of predicted future conflicts based on the input trajectories.  Statistics are collected from the set of 

predicted and true conflicts from each conflict detection cycle to compute the conflict detection metrics.  Table 2 

shows a comprehensive list of the analysis input parameters that will be discussed throughout this section.  

 
The surveillance model is defined by standard deviation parameters for a set of Gaussian error distributions 

relating to the level of error on the position and velocity states of an aircraft.  Each surveillance technology has its 

own unique error signature and the choice of Gaussian distributions was chosen for convenience as the simple 

compromise amongst the many possible error distributions.   

A fixed surveillance lag parameter, 𝑡𝑠𝑙, is applied equally over all aircraft tracks to simulate the un-compensated 

time delay that may exist between surveillance sampling time and the time of trajectory prediction.  At any conflict 

detection cycle time, 𝑡𝑐𝑑, the true track position states of an aircraft are given by 𝒔(𝑡𝑐𝑑), where, 

and the velocity states are given by 𝒗(𝑡𝑐𝑑), where, 

Linear interpolation is used to compute a true track data point at the surveillance time when the surveillance lag time 

is not an integer increment of the recorded track data.  At that same conflict detection cycle, the surveillance position 

estimate used for trajectory prediction, �̂�(𝑡𝑐𝑑), is given by the true position at surveillance time, 𝒔(𝑡𝑠) = 𝒔(𝑡𝑐𝑑 −
𝑡𝑠𝑙), plus the surveillance error components in position and velocity, 𝜺𝑠 and 𝜺𝑣, respectively.  The surveillance error 

components are computed using equations (3)-(7) as, 

 [휀𝑙𝑎𝑡(𝑡𝑠), 휀𝑙𝑜𝑛(𝑡𝑠)] = 𝒇𝐺𝐶𝐷(𝑙𝑎𝑡(𝑡𝑠), 𝑙𝑜𝑛(𝑡𝑠), 𝑁(0, 𝜎𝑟), 𝑈(0,360)) − [𝑙𝑎𝑡(𝑡𝑠), 𝑙𝑜𝑛(𝑡𝑠)] (3) 

 휀𝑎𝑙𝑡(𝑡𝑠) = 𝑁(0, 𝜎𝑎) (4) 

 휀𝑔𝑠(𝑡𝑠) = 𝑁(0, 𝜎𝑔𝑠) (5) 

 

 𝒔(𝑡) = [𝑙𝑎𝑡, 𝑙𝑜𝑛, 𝑎𝑙𝑡] (1) 

 𝒗(𝑡) = [𝑔𝑠, 𝑣𝑠, 𝑡𝑟𝑘] (2) 

Table 2. Analysis input parameters. 

Parameter Description Units 

𝑇𝑑𝑒𝑡 conflict detection cycle period seconds (s) 

𝑇𝑝𝑟𝑒𝑑 trajectory prediction and conflict detection time horizon seconds (s) 

∆𝑡𝑡𝑟𝑎𝑗 track data and trajectory prediction time interval seconds (s) 

𝐻𝑠𝑒𝑝 horizontal separation criterion nautical miles (NM) 

𝑉𝑠𝑒𝑝 vertical separation criterion feet (ft) 

𝑅𝑠 surveillance range nautical miles (NM) 

𝑡𝑠𝑙 surveillance lag time seconds (s) 

𝜎𝑟 surveillance horizontal position error standard deviation nautical miles (NM) 

𝜎𝑎 surveillance altitude error standard deviation feet (ft) 

𝜎𝑔𝑠 surveillance groundspeed error standard deviation knots (kn) 

𝜎𝑣𝑠 surveillance vertical speed error standard deviation feet/minute (ft/min) 

𝜎𝑡𝑟𝑘 surveillance track angle error standard deviation degrees (deg) 

𝛿𝑡 time value for conflict comparison criteria seconds (s) 

𝛿𝐻 horizontal distance value for conflict comparison criteria nautical miles (NM) 

𝛿𝑉 vertical distance value for conflict comparison criteria feet (ft) 
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 휀𝑣𝑠(𝑡𝑠) = 𝑁(0, 𝜎𝑣𝑠) (6) 

 휀𝑡𝑟𝑘(𝑡𝑠) = 𝑁(0, 𝜎𝑡𝑟𝑘) (7) 

where the horizontal position error components, 휀𝑙𝑎𝑡(𝑡𝑠) and 휀𝑙𝑜𝑛(𝑡𝑠), are computed using a great-circle projection 

from the true position at surveillance time, 𝑙𝑎𝑡(𝑡𝑠) and 𝑙𝑜𝑛(𝑡𝑠), with a radial distance error sampled from a Gaussian 

distribution, 𝑁(0, 𝜎𝑟), and an azimuth sampled from a Uniform distribution, 𝑈(0,360).  The great-circle projection 

function, 𝒇𝐺𝐶𝐷, computes a latitude and longitude position projected some arc-distance along an initial track on the 

surface of a sphere from a starting latitude and longitude position.  Finally, the surveillance position and velocity 

states used at conflict detection time are given by: 

 �̂�(𝑡𝑐𝑑) = [𝑙𝑎𝑡(𝑡𝑠) + 휀𝑙𝑎𝑡(𝑡𝑠), 𝑙𝑜𝑛(𝑡𝑠) + 휀𝑙𝑜𝑛(𝑡𝑠), 𝑎𝑙𝑡(𝑡𝑠) + 휀𝑎𝑙𝑡(𝑡𝑠)] (8) 

 

 �̂�(𝑡𝑐𝑑) = [𝑔𝑠(𝑡𝑠) + 휀𝑔𝑠(𝑡𝑠), 𝑣𝑠(𝑡𝑠) + 휀𝑣𝑠(𝑡𝑠), 𝑡𝑟𝑘(𝑡𝑠) + 휀𝑡𝑟𝑘(𝑡𝑠)] (9) 

Figure 1 shows a diagram of the surveillance error modeling described above.   

The trajectory prediction module implements a simple state-projection model.  In the absence of intent 

information, and without a high-fidelity trajectory generator that is beyond the fidelity of the results sought from this 

study, this is the simplest implementation for trajectory prediction.  The state projection follows the set of equations 

given by equations (10) and (11), where the great-circle projection function is again used to project from the current 

estimated horizontal position using the current estimated groundspeed and track angle: 

 [𝑙𝑎�̂�(𝑡𝑐𝑑 + ∆𝑡), 𝑙𝑜�̂�(𝑡𝑐𝑑 + ∆𝑡)] = 𝒇𝐺𝐶𝐷 (𝑙𝑎�̂�(𝑡𝑐𝑑), 𝑙𝑜�̂�(𝑡𝑐𝑑), 𝑔�̂�(𝑡𝑐𝑑) ∗ ∆𝑡, 𝑡𝑟�̂�(𝑡𝑐𝑑)) (10) 

 𝑎𝑙�̂�(𝑡𝑐𝑑 + ∆𝑡) = 𝑎𝑙𝑡(𝑡𝑐𝑑) + 𝑣�̂�(𝑡𝑐𝑑) ∗ ∆𝑡 (11) 

The trajectory prediction module computes a discretized 

trajectory estimate, 𝑻�̂�(𝑡), for each aircraft 𝑖 in the 

simulation, using a fixed time interval, given by ∆𝑡𝑡𝑟𝑎𝑗, 

from the current conflict detection cycle time, 𝑡𝑐𝑑, to the 

conflict detection horizon time, given by 𝑡𝑐𝑑 + 𝑇𝑝𝑟𝑒𝑑.  A 

simple state-projection is used for the results presented in 

this paper. 

At each conflict detection cycle, the conflict detection 

module compares the actual trajectories of aircraft to 

determine true LOS events, and compares the predicted 

trajectories of aircraft to determine predicted LOS 

events, within a specified time horizon.  A true conflict, 

𝑪𝑚,𝑖,𝑗, exists at conflict detection time, 𝑡𝑐𝑑, between 

aircraft 𝑖 and 𝑗 if there exists some time, 𝑡, within the 

time horizon (𝑡𝑐𝑑 < 𝑡 ≤ 𝑡𝑐𝑑 + 𝑇𝑝𝑟𝑒𝑑), where the true 

trajectories, 𝑻𝑖(𝑡) and 𝑻𝑗(𝑡), have a LOS (the horizontal 

distance between the aircraft trajectories is less than the 

horizontal separation criterion, 𝐻𝑠𝑒𝑝, and the vertical distance is less than the vertical separation criterion, 𝑉𝑠𝑒𝑝, 

simultaneously).  Aircraft 𝑖 and 𝑗 are said to be in (or to have a) true conflict at time 𝑡𝑐𝑑 if such a true LOS event 

exists.  The LOS event from a predicted conflict, �̂�𝑛,𝑖,𝑗, follows the same definition as for a true LOS event when 

comparing the estimated or predicted trajectory pair �̂�𝑖(𝑡) and �̂�𝑗(𝑡).  Similarly, aircraft 𝑖 and 𝑗 are said to be in (or 

to have a) predicted conflict at time 𝑡𝑐𝑑 if such a predicted LOS event exists.  Note that, in this analysis, the conflict 

detection is done over a discretized trajectory where 𝑡 ∶= 𝑘 ∗ ∆𝑡𝑡𝑟𝑎𝑗 and 𝑘 ∈ {1,2, … , 𝑇𝑝𝑟𝑒𝑑 ∆𝑡𝑡𝑟𝑎𝑗⁄ }.  A surveillance 

range parameter, 𝑅𝑠, is used to limit the pairwise conflict detection to aircraft that are within range, where infinite 

range would be equivalent to the full N2 conflict detection problem.  The conflict detection module also captures the 

statistics regarding conflict detection performance via the metrics described in section C. 

 

 

 
Figure 1.  Position and velocity error components 

for surveillance modeling. 
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C. Metrics Definitions 

The primary metrics used to characterize conflict detection performance in this paper are: false alerts, missed 

alerts, missed detections, and time-to entry into loss-of-separation at first detection for all true LOS.  Note the 

distinction between an alert and a detection (see Table 1), where an alert refers to a warning that is either issued or 

not issued (for missed alerts) for a conflict at any point in time, while a detection refers to the overall successful 

detection of a LOS event over an entire simulation run.  The traditional definition of a false alert, as it is most 

commonly found in other examples of conflict detection-related literature, is when there exists a predicted conflict 

between the predicted trajectories of two aircraft but there does not exist a true conflict between the true trajectories 

of those same two aircraft, within the same time horizon.  Similarly, the traditional definition of a missed alert is 

when there does not exist a predicted conflict between the predicted trajectories of two aircraft but there does exist a 

true conflict between the true trajectories of those same two aircraft, within the same time horizon.  As will be 

shown next, however, the definitions should be more rigorous than these, especially when working with state-

projected trajectory predictions.   

The false alert and missed alert definitions need to contain criteria to evaluate whether a predicted conflict and a 

true conflict are “the same;” that is, the LOS occurs roughly in the same place and at the same time.  Consider the 

schematic in Figure 2 where two aircraft are shown to be in predicted conflict and in true conflict.  The traditional 

definitions for false alert and missed alert would indicate that there is no false alert and no missed alert; that is, this 

example would be considered a correct alert due to the presence of both a predicted and a true conflict.  However, 

the scale of the diagram in Figure 2 might 

be large and the location of the LOS in the 

two conflicts may be many nautical miles 

apart.  This difference in location is 

important for functions such as conflict 

resolution where the difference between a 

conflict ahead-of-track and a conflict to the 

right-of-track is important.  Using the 

traditional definitions for false alert and 

missed alert may produce an artificially 

better conflict detection performance.  This 

is because, if some criteria (yet to be 

defined) for evaluating whether two 

conflicts are “the same” is applied to the 

diagram of Figure 2, either of two 

conditions will occur: the two conflicts are 

considered to be the same and the false 

alert and missed alerts are both zero, just as the traditional definitions indicate, or the two conflict are not the same, 

in which case the predicted conflict is considered to be a false alert to a non-existent LOS, and the true conflict is 

considered to be a missed alert of a true LOS.  Therefore, using a criteria for evaluating whether two conflicts are 

the same within each conflict detection cycle,  

- a false alert is a predicted conflict in the predicted trajectories of two aircraft where the same true conflict in 

the true trajectories of those aircraft does not exist, within the conflict detection time horizon, and 

- a missed alert is a true conflict in the true trajectories of two aircraft where the same predicted conflict in the 

predicted trajectories of those aircraft does not exist, within the conflict detection time horizon. 

There are many definitions that could be used to deem two conflicts to be the same.  A LOS is an event that has a 

time extent where there exists a time-in and a time-out of LOS and those times could be used for comparison. 

However, that comparison would fail for an example such as the one in Figure 2 where the temporal location of the 

LOS for the predicted and true LOS events may be very close, even though the spatial location of the two LOS is 

much different.  Another comparison method would be to use the location of the closest-point-of-approach – where 

the separation between the two trajectories is the smallest, either vertical or horizontal – of either of the two aircraft, 

but this approach is problematic because, for a shallow LOS event where the two aircraft trajectories are on nearly 

parallel tracks, the closest-point-of-approach may be many minutes after entering into LOS, which may not be very 

useful.  Because one of the primary metrics for conflict detection performance is the time-to loss-of-separation, 

∆𝑡𝐿𝑂𝑆, at first detection, the clear choice for defining a conflict vector is using the time-in to loss-of-separation, 

combined with the spatial location of the conflict, where the location is described by the positions of the two aircraft 

involved at the entry into loss-of-separation.  Define a conflict vector, 𝑪𝑚,𝑖,𝑗, between aircraft 𝑖 and aircraft 𝑗 as: 

 
Figure 2. Example predicted and actual conflicts between a 

pair of aircraft. 
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 𝑪𝑚,𝑖,𝑗 ∶= [𝑡𝐿𝑂𝑆,𝑚, 𝒔𝑖,𝑚(𝑡𝐿𝑂𝑆,𝑚), 𝒔𝑗,𝑚(𝑡𝐿𝑂𝑆,𝑚)] (12) 

where the first element is the time-in to LOS, 𝑡𝐿𝑂𝑆,𝑚, for conflict 𝑚, the next 3 elements are the position of aircraft 𝑖 

at 𝑡𝐿𝑂𝑆,𝑚, and the last 3 elements are the position of aircraft 𝑗 at 𝑡𝐿𝑂𝑆,𝑚.  Figure 3 shows the estimated positions of 

aircraft 𝑖 and 𝑗 at the time-in to LOS, 𝑡𝐿𝑂𝑆,𝑚, of a predicted conflict 𝑚, and the actual positions of those aircraft at 

the time-in to LOS, 𝑡𝐿𝑂𝑆,𝑛, of a true conflict 𝑛. 

 
 Comparison of two conflicts is done by evaluating the space/time differences between the conflict vectors 

against a set of threshold values. Let, 

 𝐷𝐻,𝑖,𝑚,𝑛 = 𝒅𝐺𝐶𝐷 (𝑙𝑎𝑡𝑖,𝑚(𝑡𝐿𝑂𝑆,𝑚), 𝑙𝑜𝑛𝑖,𝑚(𝑡𝐿𝑂𝑆,𝑚), 𝑙𝑎𝑡𝑖,𝑛(𝑡𝐿𝑂𝑆,𝑛), 𝑙𝑜𝑛𝑖,𝑛(𝑡𝐿𝑂𝑆,𝑛)) (13) 

be the horizontal arc-distance between the positions of aircraft 𝑖 in conflicts 𝑚 and 𝑛, where 𝒅𝐺𝐶𝐷  is a function that 

computes the great-circle distance between two points on a sphere. Let, 

 𝐷𝑉,𝑖,𝑚,𝑛 = |𝑎𝑙𝑡𝑖,𝑚(𝑡𝐿𝑂𝑆,𝑚) − 𝑎𝑙𝑡𝑖,𝑛(𝑡𝐿𝑂𝑆,𝑛)| (14) 

be the magnitude of the difference between the altitude of aircraft 𝑖 in conflict 𝑚, and the altitude of aircraft 𝑖 in 

conflict 𝑛.  Then, two conflicts 𝑚 and 𝑛 are said to be the same (𝑪𝑚,𝑖,𝑗 ≈ 𝑪𝑚,𝑖,𝑗) if and only if all of the conditions 

in equations (15)-(19) are satisfied: 

 |𝑡𝐿𝑂𝑆,𝑚 − 𝑡𝐿𝑂𝑆,𝑛| ≤ 𝛿𝑡 (15) 

 𝐷𝐻,𝑖,𝑚,𝑛 ≤ 𝛿𝐻 (16) 

 𝐷𝐻,𝑗,𝑚,𝑛 ≤ 𝛿𝐻 (17) 

 𝐷𝑉,𝑖,𝑚,𝑛 ≤ 𝛿𝑉 (18) 

 𝐷𝑉,𝑗,𝑚,𝑛 ≤ 𝛿𝑉 (19) 

where 𝛿𝑡, 𝛿𝐻, and 𝛿𝑉, are threshold values selected for the maximum allowable time difference between two LOS 

entry times, the maximum allowable horizontal distance between the position of each aircraft in both conflicts, and 

maximum allowable vertical distance between the altitudes of each aircraft in both conflicts, respectively.  This 

novel conflict comparison approach led to the following logic being used to determine a set of reasonable threshold 

values, based on a lateral separation standard of 5 NM and a vertical separation standard of 1000 ft: 

 𝛿𝑡 = 120 s : the time it takes to traverse 10 NM at an assumed groundspeed of 300 knots 

 𝛿𝐻 = 10 NM : the horizontal position of an aircraft 𝑖 can vary by as much as 10 NM and still be in conflict 

with an aircraft 𝑗 

 𝛿𝑉 = 2000 ft : the vertical position of an aircraft 𝑖 can vary by as much as 2000 ft and still be in conflict 

with an aircraft 𝑗 

 
Figure 3. Estimated aircraft positions at time-in to LOS, 𝒕𝑳𝑶𝑺,𝒎, for a predicted 

conflict, 𝒎, and true aircraft positions at, 𝒕𝑳𝑶𝑺,𝒏, for a true conflict, 𝒏. 
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 The comparison criteria defined by equations (15)-(19) leads directly to the computation of the primary metrics.  

At any conflict detection time, a false alert is identified when a predicted conflict is not the same as any true conflict 

within the same conflict detection horizon.  Similarly, at any conflict detection time, a missed alert is identified 

when a true conflict is not the same as any conflict predicted within the same conflict detection horizon.  The sum 

total of all false and missed alerts are collected over the entire simulation run.  A missed detection is identified by a 

true LOS that was not predicted in any conflict detection cycle over an entire simulation run.  The time-to entry into 

loss-of-separation at first detection, ∆𝑡𝐿𝑂𝑆,𝑚, for any true conflict, 𝑚, is given by: 

 ∆𝑡𝐿𝑂𝑆,𝑚 = 𝑡𝐿𝑂𝑆,𝑚 − 𝑡𝑐𝑑 (20) 

and is recorded at the earliest detection cycle in which a correct alert (a predicted conflict is the same as the true 

conflict) is issued for that true conflict. 

 The metrics are reported in terms of absolute counts, ratios or probabilities, mean values, and can also be 

presented in terms of distributions.  Table 3 lists the full set of conflict detection metrics, including those that are 

computed for the sole purpose of denominators in the probability value computations.  In each of the definitions, the 

true and predicted conflict sets, 𝑪 and �̂�, respectively, contain all conflicts within the time horizon of a single 

detection cycle when summing over all detection cycles, and all LOS over an entire simulation run otherwise.  Note 

that the observed probability metrics are subject to the conditions of each simulation run.  The observed probability 

of false alert metric indicates the likelihood that any alert provided by the conflict detector will be false.  The 

observed probability of missed alert indicates the likelihood that, at any detection cycle, there is a true LOS present 

within the conflict detection horizon that was not alerted.  Finally, the observed probability of missed detection 

indicates the likelihood that the conflict detector will fail to provide any alert for a true LOS.  The metrics associated 

with false alerts and missed alerts provide a measure of the confidence of the conflict alerting, whereas the metrics 

associated with missed detections provides a measure of the overall performance of the conflict detector under the 

conditions simulated. 

 

D. Data Pre-processing 

The analysis methodology described in this paper leverages a set of recorded traffic tracks from the NAS.  The 

source data is a fused, NAS-wide data feed from Exelis that covers 45 days in 2013 and is stored in a Data 

Warehouse at the NASA Ames Research Center.  Surveillance radar and Automatic Dependent Surveillance-

Broadcast (ADS-B) sources are fused to create full visual- and instrument-flights-rules (VFR and IFR) track profiles 

Table 3. Conflict detection performance metrics. 

Metric Definition 

𝑁𝐹𝐴 = ∑ ∑|�̂� ∖ 𝑪|

𝑡𝑐𝑑𝑠𝑖𝑚_𝑟𝑢𝑛

 
the number of false alerts from the set of predicted conflicts (conflict alerts), 

�̂�, identified during each detection cycle, summed over every detection cycle 

and over an entire simulation run 

𝑁�̂� = ∑ ∑|𝑪|̂

𝑡𝑐𝑑𝑠𝑖𝑚_𝑟𝑢𝑛

 the number of predicted conflicts (conflict alerts), �̂�, identified during each 

detection cycle,  summed over every detection cycle and over an entire 

simulation run 

𝑁𝑀𝐴 = ∑ ∑|𝑪 ∖ �̂�|

𝑡𝑐𝑑𝑠𝑖𝑚_𝑟𝑢𝑛

 the number of missed alerts from the set of true conflicts, 𝑪,  within the time 

horizon of each detection cycle, summed over every detection cycle and over 

an entire simulation run 

𝑁𝑪 = ∑ ∑|𝑪|

𝑡𝑐𝑑𝑠𝑖𝑚_𝑟𝑢𝑛

 
the number of true conflicts present during each conflict detection cycle, 

summed over every detection cycle and over an entire simulation run 

𝑁𝑪,𝑠𝑖𝑚 = |𝑪| the number of unique true conflicts (number of LOS) in a simulation run 

∆𝑡𝐿𝑂𝑆,𝑚𝑒𝑎𝑛 = ∑
∆𝑡𝐿𝑂𝑆,𝑚

𝑀

𝑀

𝑚=1,2,…

 
mean time-to loss-of-separation at first detection for all 𝑀 successfully 

detected true conflicts (missed detections not included) 

𝑁𝑀𝐷 = |𝑪 ∖ �̂�| the number of missed detections – from the set of all true conflicts, 𝑪, 

not in the set of predicted conflicts (conflict alerts), �̂�, over an entire 

simulation run 

𝑃𝐹𝐴 = 𝑁𝐹𝐴 𝑁�̂�⁄  the false alert ratio or false alert probability 

𝑃𝑀𝐴 = 𝑁𝑀𝐴 𝑁𝑪⁄  the missed alert ratio or missed alert probability 

𝑃𝑀𝐷 = 𝑁𝑀𝐷 𝑁𝑪,𝑠𝑖𝑚⁄  the missed detection ratio or missed detection probability 

 



 

American Institute of Aeronautics and Astronautics 
 

 

10 

(latitude, longitude, altitude, and time) for flights within the Continental United States (CONUS), and partial track 

profiles for flights entering and exiting the NAS.   

A representative day of traffic was chosen from the Exelis data set for use in this study.  Figure 4 shows the 

Federal Aviation Administration’s Aviation System Performance Metrics (ASPM77)22 database values for total 

daily operations and total daily delayed operations for one portion of the available data days.  The representative day 

of traffic was chosen to be March 28th, 2013 due to the high demand and low level of delayed operations, likely 

indicating a day with low weather impacts on the flown tracks.  A 36-hour window was selected to capture 6 hours 

of traffic prior to and 6 hours of traffic after the selected date.  This allows for the inclusion of the complete track 

profile for flights that were already airborne before the start of the selected date and those that were still airborne at 

the conclusion of the selected date. 

 
The raw Exelis track data required pre-conditioning and filtering before it could be used to conduct this analysis.  

The data inherently contains the surveillance noise from the surveillance sensors that captured the data.  

Additionally, the fusion of multiple data sources can introduce an artificial noise due to the various sampling 

frequencies and timestamps.  Figure 5 and Figure 6 show the track and altitude profiles, respectively, for a randomly 

 
Figure 4. ASPM77 daily total operations (top), and ASPM daily delayed operations (bottom). March 

28, 2013 was chosen as a high volume and low delay day within the recorded traffic data available. 

 
Figure 5. Track profile for sample flight (KTPA-

KBOS). 

 

 
Figure 6. Altitude profile for sample flight (KTPA-

KBOS). 
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Figure 7. Groundspeed profile for sample flight 

(KTPA-KBOS). 

 

selected flight.  Note that, using these figures alone, it is difficult to spot the noisy characteristics of the data.  

However, an inspection of the velocity profiles of this example flight taken from simple differential derivatives 

reveals the noise characteristics. Figure 7-Figure 9 show the groundspeed, vertical speed, and track angle profiles, 

respectively, for the same sample flight.  Note the high 

level of noise in these velocity profiles.  In each of the 

figures for the sample flight, the raw track data is shown 

in blue and the final processed track data for use in this 

analysis is shown in red.   The processing of the track 

data was completed in three basic steps.  First, a pre-

screening step was used to discard flights that did not 

have sufficient data useful for this analysis.  This included 

discarding flights with no track data above flight level 

(FL) 180, discarding flights fully outside the time window 

of interest, and discarding flights with anomalous track 

data.  Next, a conditioning step was used to correct any 

data drop-outs and to trim the flight track data to the 

portion above FL180.  Flight segments below FL180 

include VFR flights with altitude separations in 500 foot 

increments and traffic entering or exiting the terminal 

airspace environment where the separation standards are 

different from the en-route environment and special 

separation rules exist23; these conditions were observed in 

a few test runs of the analysis model with the un-time-

shifted track data.  Finally, a filtering step was used to 

remove the surveillance and data fusion noise in order to 

create a baseline set of track data.  A combination of 

excessive groundspeed and vertical speed data point 

removal, followed by a one-dimensional Kalman Filter, 

generated the final processed track data that can be seen 

in Figure 5-Figure 9.  The thresholds and algorithms used 

for the processing of the raw data were developed largely 

by observations drawn from the raw data.  Here is a list of 

the pre-processing and filtering steps that were applied to 

the raw data:  

Pre-screening:  

 Discard all flights with no data points above 

FL180 

 Discard all flights with the same origin and 

destination airport 

 Discard flights with un-identified origin or 

destination airport 

 Discard any flights already airborne at the 

beginning of the 36 hour sample window 

 Discard any flights still airborne at the end of the 

36 hour sample window 

 Discard any flights with excessive data gaps in 

time (greater than 5 minutes) 

 Discard any flights with a processed track time 

less than 10 minutes 

 Discard any flights with incomplete track data 

(missing descent or climb portion but fully 

within the CONUS) 

Conditioning: 

 Trim all track data to retain only the portion 

above FL180 

 
Figure 8. Vertical speed profile for sample flight 

(KTPA-KBOS). 

 

 
Figure 9. Track angle profile for sample flight 

(KTPA-KBOS). 
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 Remove any duplicated time data points 

 Remove any data drop-outs (identified via vertical speeds in excess of 10,000 ft/min) 

Filtering: 

 Recursively remove any data points producing excessive groundspeed and vertical speed  

o Groundspeeds greater than 590 knots 

o Vertical speeds greater than 10000 ft/min 

 Recursively remove any data points with large groundspeed and vertical speed deviations away from a 9-

point centered moving average 

o Groundspeed differences larger than 100 knots 

o Vertical speed differences larger than 100 ft/min 

 Interpolate the track data for a uniform time sampling of 5 seconds 

 Apply a one-dimensional Kalman Filter24 to the track data (altitude, latitude, and longitude)       

 The selected traffic demand day of March 28th, 2013, with the additional 6 hours of pre- and 6 hours of post-

traffic, contained a total of 72,769 recorded traffic tracks.  After the processing steps above were implemented, the 

remaining traffic set contained 30,779 recorded traffic tracks. 

E. Scenario Generation 

Simulation scenarios for this analysis were created by time-shifting the recorded traffic data in order to generate 

losses-of-separation that were not present in the un-shifted tracks.  The objective was to create as many LOS events 

as possible.  A similar approach was used by Paglione and Bilimoria.21  Density and complexity of a traffic scenario 

is not important for conflict detection because conflict detection is a pair-wise function; regardless of any 

background traffic, a conflict detector has the same likelihood of successfully detecting/alerting a conflict for the 

same pair of aircraft, in the absence of resolution.  Note that, even though scenario complexity is not a primary 

factor in conflict detection performance, trajectory complexity, on the other hand, is an important factor and these 

two measures can have some correlation when working with recorded data. The density of traffic in a scenario can 

be increased if more conflicts are needed beyond those created by time-shifting the original traffic demand, but this 

was not necessary in this preliminary set of runs.  The time-shifting of the traffic tracks was done by adding a 

random time-shift to each track’s original start time, sampled from a uniform distribution, 

𝑈(−𝑡𝑠ℎ𝑖𝑓𝑡,𝑚𝑎𝑥 , 𝑡𝑠ℎ𝑖𝑓𝑡,𝑚𝑎𝑥). 

IV. Results 

The results presented here encompass a preliminary set of 

analysis runs to investigate the correctness of the observed trends and 

the sensitivity of the metrics to the input parameters.   In each of 

these runs, only a single parameter was varied to determine the 

impact on the metrics, while a nominal set of parameters was held 

constant for the parameters not under investigation. Table 4 lists the 

nominal set of input parameters that were used in these preliminary 

runs.  Notice that the minimum vertical separation criterion used is 

less than the minimum separation standard of 1000 feet.  The 

criterion of 800 feet is used instead because the recorded traffic data 

is subject to the Mode C resolution of 100 feet in some instances, 

which causes a high number of conflicts in the un-shifted track data 

that are not real conflicts. 

The first set of analysis runs was conducted to understand the 

impact of various time-shifts of the original schedule on the number 

of LOS created.  Ten different scenarios using the full recorded 

traffic data set were generated with a maximum time shift parameter, 

𝑡𝑠ℎ𝑖𝑓𝑡,𝑚𝑎𝑥, of zero, two, five, and fifteen minutes, and one, two, four, 

six, twelve, and twenty-four hours and with the nominal model 

parameter values.  These runs helped to identify the time shift that produces the highest number of true losses-of-

separation.  As seen in Figure 10, the peak number of true LOS is achieved with a time shift around fifteen minutes 

to one hour.  At these time shift values, the full day of time-shifted traffic produces over 15,000 true LOS.  The 

increase followed by a decrease in the number of true LOS is a result of the small increase in time shift values that 

Table 4. Nominal parameter values. 

Parameter Value 

𝑇𝑑𝑒𝑡 60 s 

𝑇𝑝𝑟𝑒𝑑 1200 s 

∆𝑡𝑡𝑟𝑎𝑗 5 s 

𝐻𝑠𝑒𝑝 5 NM 

𝑉𝑠𝑒𝑝 800 ft 

𝑅𝑠 1500 NM 

𝑡𝑠𝑙 0 s 

𝜎𝑟 0 NM 

𝜎𝑎 0 ft 

𝜎𝑔𝑠 0 kn 

𝜎𝑣𝑠 0 ft/min 

𝜎𝑡𝑟𝑘 0 deg 

𝛿𝑡 120 s 

𝛿𝐻 10 NM 

𝛿𝑉 2000 ft 
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increasingly create LOS events in the recorded tracks until such point as the peaks of traffic start to flattens out and 

the density of traffic is reduced, as shown by the number of simulated traffic over the simulation time in Figure 11. 

   
The next set of analysis runs were conducted to show the variability in the metrics from different randomizations 

of the same maximum time shift.  Ten different random scenarios of the full recorded traffic data set were created 

using the same maximum time shift of one hour.  Table 5 shows the statistics for the metrics for these ten different 

scenario runs.  The results indicate that the variability is small with less than 2% in standard deviation for most of 

the metrics, while the number and probability of missed detections had a higher standard deviation (under 7%).  This 

small variability indicates that the selection of a single scenario from amongst these 10 randomizations as a baseline 

scenario is sufficient for investigating the trends in the analysis metrics.  For the remaining analysis runs, one of 

these 1-hour time shift randomized scenarios was used as a baseline for comparison. 

 
The baseline performance of the conflict detection function using the nominal set of parameters outlined in Table 

4 is relatively poor, with false alert and missed alert probabilities of 74.5% and 73.5%, respectively, and a missed 

detection probability of 6.5%.  The high false and missed alerts are primarily due to the state-only trajectory 

projection method used over a relatively long conflict detection time horizon; analysis runs with shorter conflict 

detection time horizon presented in this section show improved performance.   

A nominal conflict detection cycle period, 𝑇𝑑𝑒𝑡 , of 60 seconds was chosen based on the time required to produce 

one analysis run.  Nonetheless, it was important to understand the impact of this parameter on the CD performance 

metrics.  The 1-hour time shift baseline scenario was run using the nominal parameter values of Table 4 but with a 

conflict detection cycle period of 15, 30, 60, 120, and 300 seconds.  Table 6 shows the conflict detection 

performance metrics for each of these runs.  As the conflict detection cycle period is increased, the number of alerts 

decreases proportionally with the decrease in the number of conflict detection cycles within the same simulation 

 
Figure 10. Number of true LOS,  

𝑵𝑪,𝒔𝒊𝒎, created as a function of the maximum time 

shift parameter, 𝒕𝒔𝒉𝒊𝒇𝒕,𝒎𝒂𝒙. 

 

 
Figure 11. Number of flights as a function of the 

simulation clock time for a few of the time shift 

scenarios. 

 

Table 5. Conflict detection performance metrics* for ten 

randomization scenarios with a 1-hour time shift. 

Metric Mean Min Max Standard 

Deviation (%) 

𝑁𝐹𝐴 185,815 184,222 188,468 1,325 (0.71%) 

𝑁�̂� 249,582 246,964 252,128 1,781 (0.71%) 

𝑁𝑀𝐴 176,945 171,280 182,040 3,285 (1.86%) 

𝑁𝑪 240,712 234,952 247,688 3,923 (1.63%) 

𝑁𝑪,𝑠𝑖𝑚 15,604 15,274 15,988 205 (1.31%) 

∆𝑡𝐿𝑂𝑆,𝑚𝑒𝑎𝑛 289 285 293 2.9 (1.04%) 

𝑁𝑀𝐷 1,012 878 1,092 70 (6.92%) 

𝑃𝐹𝐴 0.745 0.740 0.748 0.003 (0.40%) 

𝑃𝑀𝐴 0.735 0.729 0.738 0.003 (0.41%) 

𝑃𝑀𝐷  0.065 0.057 0.070 0.004 (6.15%) 

* Refer to Table 3 or the Nomenclature for metrics definitions. 
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time.  The observed false alert and missed alert probabilities, as shown in Figure 12, are nearly un-changed with a 

1.4% spread in false alert probability and a 0.5% spread in missed alert probability.  However, there is a significant 

impact on the observed missed detection probability, as shown in Figure 13, with an increase from 0.4% at a CD 

cycle period of 15 seconds, to more than 45% with a CD cycle period of 5 minutes.  The penalty for using a CD 

cycle period of 60 seconds as the nominal parameter for a baseline scenario is a missed detection probability around 

~7%; this missed detection rate in a baseline run is better than one very close to zero because it will allow us to 

better demonstrate positive impacts to performance. 

 

   
The conflict detection time horizon should have a significant impact on the conflict detection performance 

metrics.  A shorter detection and prediction horizon has a positive impact on the trajectory prediction quality for a 

state-only predictor because the prediction is less likely to miss an intended trajectory change.  The 1-hour time shift 

baseline scenario was run using the nominal parameter values of Table 4 but with conflict detection time horizons, 

𝑇𝑝𝑟𝑒𝑑, of {1,2,3,4,5,6,8,10,12,14,16,18,20} minutes.  Table 7 shows the resulting conflict detection performance 

metrics.  Regardless of the conflict detection time horizon, the baseline scenario contains 15,574 true LOS.  Note 

that, for the case where the CD time horizon is one minute, the number of true conflicts present during each conflict 

detection cycle, 𝑁𝑪, is exactly equal to the total number of true LOS in the simulation run, 𝑁𝑪,𝑠𝑖𝑚, and the missed 

alert probability is equal to the missed detection probability.  This occurs because the CD cycle period is equal to the 

CD time horizon and each LOS is only present for detection during one detection cycle; therefore, in this case, a 

missed alert is equivalently a missed detection. 

Larger conflict detection time horizons have an increased probability of both false alerts and missed alerts but a 

decreased probability of missed detections.  As the detection time horizon is increased, the number of conflict alerts, 

Table 6. Conflict detection performance metrics* for various conflict 

detection cycle periods. 

 Conflict Detection Cycle Period, 𝑇𝑑𝑒𝑡, [s] 

Metric 15 30 60 120 300 

𝑁𝐹𝐴  731,088   366,160   184,222   93,230   38,544  

𝑁�̂�  984,686   492,828   247,630   124,892   50,992  

𝑁𝑀𝐴  700,628   350,442   175,182   87,648   35,270  

𝑁𝑪  954,226   477,110   238,590   119,310   47,718  

𝑁𝑪,𝑠𝑖𝑚  15,764   15,714   15,574   15,368   14,780  

∆𝑡𝐿𝑂𝑆,𝑚𝑒𝑎𝑛  328   305   287   280   298  

𝑁𝑀𝐷  56   252   988   2,908   6,684  

𝑃𝐹𝐴 0.742 0.743 0.744 0.746 0.756 

𝑃𝑀𝐴 0.734 0.735 0.734 0.735 0.739 

𝑃𝑀𝐷  0.004 0.016 0.063 0.189 0.452 

* Refer to Table 3 or the Nomenclature for metrics definitions. 

 
Figure 12. Observed false alert and missed alert 

probabilities, 𝑷𝑭𝑨 and 𝑷𝑴𝑨, as a function of the 

conflict detection cycle period, 𝑻𝒅𝒆𝒕. 

 

 
Figure 13. Observed missed detection probability, 

𝑷𝑴𝑫, as a function of the conflict detection cycle 

period, 𝑻𝒅𝒆𝒕. 
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𝑁�̂�, increases at a slower rate than the number of false alerts, causing an increase in the false alert probability.  A 

similar trend is observed for the missed alert probability as shown in Figure 14. This is the expected behavior of 

conflict detection based on a state-projection trajectory prediction that does not take into account trajectory changes 

within the same time horizon.  The missed detection probability shows a sharply decreasing trend for small values of 

CD time horizon, but quickly settles to a value below 7% probability with CD time horizon of five minutes or 

greater, as seen in Figure 15.  The mean time-to LOS at first detection for the successfully detected conflicts, shown 

in Figure 16, also has an increasing trend due to the fact that the longer time horizons provide the detector the 

opportunity to identify LOS earlier.  Consequently, a trade-off can be made to keep false alerts and missed alerts low 

while decreasing the missed detections and increasing the mean time-to LOS in the process of selecting the best 

conflict detection time horizon under the conditions simulated in this scenario run. 

   
 As a better indication of the poor performance of conflict detection with state-only trajectory prediction, we 

can look at the probability of false alerts and the probability of missed alerts as a function of the time-to LOS. Figure 

17 shows those probability distributions for the baseline scenario with a 20 minute CD time horizon and 60 second 

CD cycle period (same run as the last column of Table 7).  This figure clearly shows that the conflict alerts that 

report a large time-to LOS have a high probability of being false; in fact,  conflict alerts with a time-to LOS greater 

than approximately 2.5 minutes have a higher than 50% probability of being false alerts and that probability 

increases to greater than 80% at just over 6 minutes reported time-to LOS.  Similarly, missed alerts are more likely 

for conflicts that are farther out in the CD horizon.  Because false alerts are typically characterized as “nuisance 

alerts” that can cause distrust in alerting algorithms where humans are involved, and because false alerts can add 

unnecessary workload to functions that leverage the conflict detection results (e.g., conflict resolution), it would be 

ill-advised to implement a state-projection trajectory prediction methodology and CD algorithm with a long 

detection time horizon. 

 
Figure 14. Observed false alert and missed alert 

probabilities, 𝑷𝑭𝑨 and 𝑷𝑴𝑨, as a function of the 

conflict detection time horizon, 𝑻𝒑𝒓𝒆𝒅. 

 

 
Figure 15. Observed missed detection probability, 

𝑷𝑴𝑫, as a function of the conflict detection time 

horizon, 𝑻𝒑𝒓𝒆𝒅. 

 

Table 7. Conflict detection performance metrics* for various conflict detection time horizons. 

 Conflict Detection Time Horizon, 𝑇𝑝𝑟𝑒𝑑, [min] 

Metric 1 2 3 4 5 6 8 10 12 14 16 18 20 

𝑁𝐹𝐴 2,304 7,990 15,998 25,948 36,866 48,608 71,842 94,238 114,418 133,200 150,864 167,794 184,222 

𝑁�̂� 15,720 31,166 46,398 61,846 77,030 92,218 120,824 147,236 170,482 191,710 211,398 229,916 247,630 

𝑁𝑀𝐴 2,158 7,550 15,082 23,972 33,748 44,004 64,860 85,408 105,108 123,878 141,690 158,774 175,182 

𝑁𝑪 15,574 30,726 45,482 59,870 73,912 87,614 113,842 138,406 161,172 182,388 202,224 220,896 238,590 

𝑁𝑪,𝑠𝑖𝑚 15,574 15,574 15,574 15,574 15,574 15,574 15,574 15,574 15,574 15,574 15,574 15,574 15,574 

∆𝑡𝐿𝑂𝑆,𝑚𝑒𝑎𝑛 30 70 102 127 149 166 195 218 236 251 265 277 287 

𝑁𝑀𝐷 2,158 1,316 1,176 1,108 1,080 1,056 1,026 1,008 1,002 998 990 988 988 

𝑃𝐹𝐴 0.147 0.256 0.345 0.420 0.479 0.527 0.595 0.640 0.671 0.695 0.714 0.730 0.744 

𝑃𝑀𝐴 0.139 0.246 0.332 0.400 0.457 0.502 0.570 0.617 0.652 0.679 0.701 0.719 0.734 

𝑃𝑀𝐷  0.139 0.084 0.076 0.071 0.069 0.068 0.066 0.065 0.064 0.064 0.064 0.063 0.063 

* Refer to Table 3 or the Nomenclature for metrics definitions. 
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The distribution of the detected true LOS versus the time-to LOS at first detection does indicate that some 

conflicts were successfully detected and alerted with a time-to LOS up to the full CD time horizon of 20 minutes, as 

seen in Figure 18.  However, the distribution indicates that the bulk of the LOS were detected with less than 5 

minutes time-to LOS.   This is verified in Figure 19 which shows the percent of conflicts detected as a function of a 

minimum time-to LOS; only 28% percent of detected LOS events provided 5 minutes or more of time-to LOS 

alerting time.  Note that the intercept at a minimum time-to LOS of zero in Figure 19 (93.7%) indicates the overall 

probability of successful detection for this scenario, which is equal to one minus the probability of missed 

detections.  

   
Preliminary analysis runs were also conducted to investigate the 

sensitivity of the CD performance metrics to the surveillance error 

model parameters.  Each of the six sensitivity parameters was varied 

individually in a set of six analysis runs, where only the single 

parameter under investigation was varied while the remaining model 

parameters retained their nominal values. Table 8 shows the six 

surveillance model parameters whose values were selected arbitrarily.  

The purpose of these analysis runs was simply to observe the trend in 

the primary metrics.  Table 9 shows the CD performance metrics for 

the baseline run and the six surveillance error parameter variations.  

 
Figure 16. Mean time-to LOS at first detection,  

∆𝒕𝑳𝑶𝑺,𝒎𝒆𝒂𝒏, as a function of the conflict detection 

time horizon, 𝑻𝒑𝒓𝒆𝒅. 

 

 
Figure 17. False alert and missed alert 

probabilities, 𝑷𝑭𝑨 and 𝑷𝑴𝑨, as a function of the 

alert’s time-to LOS, ∆𝒕𝑳𝑶𝑺. 

 

 
Figure 18. Distribution of detected true LOS,  

𝑵𝑪,𝒔𝒊𝒎, versus the time-to LOS at first detection, 

∆𝒕𝑳𝑶𝑺. 

 
Figure 19. Percent detected conflicts versus  

minimum alert time-to LOS. 

 

Table 8. Surveillance error parameter 

values for individual sensitivity runs. 

Parameter Value 

𝑡𝑠𝑙 15 s 

𝜎𝑟 0.25 NM 

𝜎𝑎 100 ft 

𝜎𝑔𝑠 20 kn 

𝜎𝑣𝑠 200 ft/min 

𝜎𝑡𝑟𝑘 1 deg 
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Figure 20 shows the variation of the false alert and missed alert probabilities for the six surveillance error model 

parameters as compared to the baseline, while Figure 21 shows the same comparison for the missed detection 

probability. 

The CD performance metrics indicate an appropriate direction for the sensitivity relative to the surveillance error 

model parameters.  That is, any amount of non-zero surveillance error in the model parameters has a negative impact 

on CD performance, with higher false alerts, missed alert, and missed detections.  Note that the missed detection 

probability for the surveillance error parameter in the vertical speed, 𝜎𝑣𝑠, is the only primary metric that shows an 

un-expected sensitivity with a decrease in the likelihood of missed detections with increasing vertical speed error.  

This could be due to the high variability of this parameter to random variations that was identified in Table 5; further 

investigation would be needed to characterize the uncertainty in the performance metrics due to each of the 

surveillance error parameters. 

 

   

V. Summary 

 There is an effort underway at NASA to parametrically characterize the performance of the conflict detection 

function of a separation assurance system in terms of the data quality and data content available to that function.  

This parametric characterization will allow for the quick understanding of the performance of various allocations of 

the CD function (e.g., airborne, ground-based, and under various surveillance conditions) where the data quality and 

data content can be parametrically described. 

This paper presents an analysis capability that has been developed for the characterization of conflict detection 

performance.  A surveillance error model has been developed and implemented.  An appropriate set of performance 

Table 9. Conflict detection performance metrics* for single surveillance error parameter runs. 

 Sensitivity Parameter Run 

Metric baseline 𝑡𝑠𝑙 = 15 𝑠 𝜎𝑟

= 0.25 𝑁𝑀 

𝜎𝑎

= 100 𝑓𝑡 

𝜎𝑔𝑠

= 20 𝑘𝑛 

𝜎𝑣𝑠

= 200 𝑓𝑡/𝑚𝑖𝑛 

𝜎𝑡𝑟𝑘

= 1 𝑑𝑒𝑔 

𝑁𝐹𝐴 184,222 192,792 185,298 217,890 200,014 333,770 183,832 

𝑁�̂� 247,630 252,202 247,728 281,032 254,556 378,124 245,342 

𝑁𝑀𝐴 175,182 179,180 176,160 175,448 184,048 194,236 177,080 

𝑁𝑪 238,590 238,590 238,590 238,590 238,590 238,590 238,590 

𝑁𝑪,𝑠𝑖𝑚 15,574 15,574 15,574 15,574 15,574 15,574 15,574 

∆𝑡𝐿𝑂𝑆,𝑚𝑒𝑎𝑛 287 289 289 295 277 254 286 

𝑁𝑀𝐷 988 1,900 1,134 1,104 1,124 866 988 

𝑃𝐹𝐴 0.744 0.764 0.748 0.775 0.786 0.883 0.749 

𝑃𝑀𝐴 0.734 0.751 0.738 0.735 0.771 0.814 0.742 

𝑃𝑀𝐷  0.063 0.122 0.073 0.071 0.072 0.056 0.063 

* Refer to Table 3 or the Nomenclature for metrics definitions. 

 
Figure 20. Observed false alert and missed alert 

probabilities, 𝑷𝑭𝑨 and 𝑷𝑴𝑨, for the baseline 

scenario and the six sensitivity scenarios. 

 

 
Figure 21. Observed missed detection 

probabilities, 𝑷𝑴𝑫, for the baseline scenario and 

the six sensitivity scenarios. 

 



 

American Institute of Aeronautics and Astronautics 
 

 

18 

metrics have been rigorously defined.  The analysis model was exercised by using time-shifted, recorded track data 

from the NAS. The appropriate data conditioning and filtering approaches for removing surveillance error and 

sensor fusion-induced noise were described in this paper.  Finally a set of preliminary analysis runs were presented 

to demonstrate the ability of time-shifted recorded track data scenarios in creating losses-of-separation and to show 

the observed trends in the performance metrics due to variations in the input parameters.  Preliminary sensitivity 

runs for the surveillance error model parameters were also presented. 

The preliminary results from this conflict detection analysis capability indicate appropriate trends in the 

performance metrics and demonstrate that time-shifted, recorded traffic data playback and analysis is a suitable 

approach for evaluating conflict detection performance in a parametric way.  The peak number of true LOS created 

by time-shifting of the recorded data was achieved using a uniform maximum time shift of one hour, 𝑈(−1ℎ𝑟, 1ℎ𝑟).  

Different randomization scenarios of that one-hour time shift showed small variability in the metrics, thereby 

justifying the use of a single baseline scenario from that set for investigating the trends in the analysis metrics.  The 

baseline performance of the conflict detection function using a nominal set of parameters and under the conditions 

tested was relatively poor, with false alert and missed alert probabilities of 74.5% and 73.5%, respectively, and a 

missed detection probability of 6.5%, primarily due to the state-projection trajectory prediction method used.  The 

CD cycle period showed a small change in the false alert and missed alert probabilities but a significant increase in 

missed detection probability, from 0.4% at a CD cycle period of 15 seconds, to more than 45% at a CD cycle period 

of 5 minutes.  As expected, longer conflict detection time horizons had an increased probability of both false alerts 

and missed alerts but a decreased probability of missed detections.  Additionally, conflict alerts that reported a large 

time-to LOS had a high probability of being false, missed alerts were more likely for LOS farther out in the 

detection horizon, and the bulk of the LOS successfully detected were detected with less than 5 minutes time-to 

LOS.  The CD performance metrics indicated an appropriate direction for the sensitivity relative to the surveillance 

error model parameters while further analysis is required to understand the magnitude of uncertainty in the 

performance metrics.  

The next steps in this work will be to continue to develop the analysis capability in order to conduct the complete 

characterization of CD performance with respect to data quality and data content.  Intent information as well as a 

trajectory predictor that can use that intent information will be the next components added to the analysis.  

Parametric descriptions for data quality and data content will then be analyzed for current day and proposed future 

surveillance technologies to identify the performance of the CD function under these conditions.  Finally, a complete 

set of sensitivity analyses will be generated to understand the impact of the various input parameters on the CD 

performance metrics. 
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