495 research outputs found

    Comparing human and automatic thesaurus mapping approaches in the agricultural domain

    Get PDF
    Knowledge organization systems (KOS), like thesauri and other controlled vocabularies, are used to provide subject access to information systems across the web. Due to the heterogeneity of these systems, mapping between vocabularies becomes crucial for retrieving relevant information. However, mapping thesauri is a laborious task, and thus big efforts are being made to automate the mapping process. This paper examines two mapping approaches involving the agricultural thesaurus AGROVOC, one machine-created and one human created. We are addressing the basic question "What are the pros and cons of human and automatic mapping and how can they complement each other?" By pointing out the difficulties in specific cases or groups of cases and grouping the sample into simple and difficult types of mappings, we show the limitations of current automatic methods and come up with some basic recommendations on what approach to use when.Comment: 10 pages, Int'l Conf. on Dublin Core and Metadata Applications 200

    Procedures for periodizing history: determining eras in the histories of Britain, France, Germany and Italy

    Full text link
    Die Autoren entwickeln anhand konkreter Untersuchungen Vorschläge zum Problem der Periodisierung historischer Zeitabschnitte. Die theoretischen und methodischen Implikationen dieses Problems werden im Rahmen der Untersuchung des Wachstums der staatlichen Ausgaben für Erziehung, Gesundheit, Wohlfahrt und soziale Sicherung in den Ländern Großbritannien, Frankreich, Deutschland und Italien von 1870 bis 1965 dargestellt. Dieser Gegenstandsbereich wurde ausgewählt, weil sich an den Wandlungen in diesem Sektor auch die gesellschaftlichen Wandlungen ablesen lassen. Die Darstellung der Untersuchung umfaßt neben konkreten Ergebnissen die Analyse der methodischen und theoretischen Probleme, insbesondere die Behandlung der Daten und die alternativen Möglichkeiten der Periodisierung anhand einer Variable und mittels multipler Zeitläufe. Die Untersuchung ergibt, daß die traditionelle Chronologie nur in Einzelfällen zur Periodisierung ausreicht. (BG

    A photosynthetic rotating annular bioreactor (Taylor–Couette type flow) for phototrophic biofilm cultures

    Get PDF
    In their natural environment, the structure and functioning of microbial communities from river phototrophic biofilms are driven by biotic and abiotic factors. An understanding of the mechanisms that mediate the community structure, its dynamics and the biological succession processes during phototrophic biofilm development can be gained using laboratory-scale systems operating with controlled parameters. For this purpose, we present the design and description of a new prototype of a rotating annular bioreactor (RAB) (TayloreCouette type flow, liquid working volume of 5.04 L) specifically adapted for the cultivation and investigation of phototrophic biofilms. The innovation lies in the presence of a modular source of light inside of the system, with the biofilm colonization and development taking place on the stationary outer cylinder (onto 32 removable polyethylene plates). The biofilm cultures were investigated under controlled turbulent flowing conditions and nutrients were provided using a synthetic medium (tap water supplemented with nitrate, phosphate and silica) to favour the biofilm growth. The hydrodynamic features of the water flow were characterized using a tracer method, showing behaviour corresponding to a completely mixed reactor. Shear stress forces on the surface of plates were also quantified by computer simulations and correlated with the rotational speed of the inner cylinder. Two phototrophic biofilm development experiments were performed for periods of 6.7 and 7 weeks with different inoculation procedures and illumination intensities. For both experiments, biofilm biomasses exhibited linear growth kinetics and produced 4.2 and 2.4 mg cm-2 of ash-free dry matter. Algal and bacterial community structures were assessed by microscopy and T-RFLP, respectively, and the two experiments were different but revealed similar temporal dynamics. Our study confirmed the performance and multipurpose nature of such an innovative photosynthetic bioreactor for phototrophic biofilm investigations

    The relationship between epilithic biofilm stability and its associated meiofauna under two patterns of flood disturbance

    Get PDF
    Habitat stability is an important driver of ecological community composition and development. River epilithic biofilms are particularly unstable habitats for the establishment of benthic communities because they are regularly disturbed by floods. Our aim was to determine the influence of habitat instability on meiobenthic organisms. We hypothesized that hydrologic variables are the most important predictors of meiofauna distribution. We monitored epilithic communities (meiofauna and microalgae) with a high sampling frequency during 2 sampling periods with contrasting hydrodynamic patterns in a temperate river (the Garonne, France). Nematodes and rotifers dominated meiofaunal assemblages. The critical flow velocity threshold for their maintenance in the biofilm was ,30 cm/s, a result suggesting that meiofauna can resist higher flow velocity within the biofilm than within sediments. Nematode distribution was primarily influenced by the duration of undisturbed periods, whereas rotifer distribution was also correlated with the thickness of the biofilm. During the periods after floods, rotifers were faster colonizers than nematodes. Collectively, our results show that flow regime was an essential driver for biofilm community development

    Estimating Protein-Ligand Binding Affinity using High- Throughput Screening by NMR

    Get PDF
    Many of today’s drug discovery programs utilize high-throughput screening methods that rely on quick evaluations of protein activity to rank potential chemical leads. By monitoring biologically relevant protein-ligand interactions, NMR can provide a means to validate these discovery leads and to optimize the drug discovery process. NMR-based screens typically use a change in chemical shift or linewidth to detect a protein-ligand interaction. However, the relatively low throughput of current NMR screens and their high demand on sample requirements generally makes it impractical to collect complete binding curves to measure the affinity for each compound in a large and diverse chemical library. As a result, NMR ligand screens are typically limited to identifying candidates that bind to a protein and do not give any estimate of the binding affinity. To address this issue, a methodology has been developed to rank binding affinities for ligands based on NMR-based screens that use 1D 1H NMR line-broadening experiments. This method was demonstrated by using it to estimate the dissociation equilibrium constants for twelve ligands with the protein human serum albumin (HSA). The results were found to give good agreement with previous affinities that have been reported for these same ligands with HSA

    Estimating Protein-Ligand Binding Affinity using High- Throughput Screening by NMR

    Get PDF
    Many of today’s drug discovery programs utilize high-throughput screening methods that rely on quick evaluations of protein activity to rank potential chemical leads. By monitoring biologically relevant protein-ligand interactions, NMR can provide a means to validate these discovery leads and to optimize the drug discovery process. NMR-based screens typically use a change in chemical shift or linewidth to detect a protein-ligand interaction. However, the relatively low throughput of current NMR screens and their high demand on sample requirements generally makes it impractical to collect complete binding curves to measure the affinity for each compound in a large and diverse chemical library. As a result, NMR ligand screens are typically limited to identifying candidates that bind to a protein and do not give any estimate of the binding affinity. To address this issue, a methodology has been developed to rank binding affinities for ligands based on NMR-based screens that use 1D 1H NMR line-broadening experiments. This method was demonstrated by using it to estimate the dissociation equilibrium constants for twelve ligands with the protein human serum albumin (HSA). The results were found to give good agreement with previous affinities that have been reported for these same ligands with HSA
    • …
    corecore