147 research outputs found

    Spherical gravitational collapse in N-dimensions

    Full text link
    We investigate here spherically symmetric gravitational collapse in a spacetime with an arbitrary number of dimensions and with a general {\it type I} matter field, which is a broad class that includes most of the physically reasonable matter forms. We show that given the initial data for matter in terms of the initial density and pressure profiles at an initial surface t=tit=t_i from which the collapse evolves, there exist rest of the initial data functions and classes of solutions of Einstein equations which we construct here, such that the spacetime evolution goes to a final state which is either a black hole or a naked singularity, depending on the nature of initial data and evolutions chosen, and subject to validity of the weak energy condition. The results are discussed and analyzed in the light of the cosmic censorship hypothesis in black hole physics. The formalism here combines the earlier results on gravitational collapse in four dimensions in a unified treatment. Also the earlier work is generalized to higher dimensional spacetimes to allow a study of the effect of number of dimensions on the possible final outcome of the collapse in terms of either a black hole or naked singularity. No restriction is adopted on the number of dimensions, and other limiting assumptions such as self-similarity of spacetime are avoided, in order to keep the treatment general. Our methodology allows to consider to an extent the genericity and stability aspects related to the occurrence of naked singularities in gravitational collapse.Comment: Revtex4, The replaced version matches the published on

    Versatile Coordination of Cyclopentadienyl-Arene Ligands and Its Role in Titanium-Catalyzed Ethylene Trimerization

    Get PDF
    Cationic titanium(IV) complexes with ansa-(η5-cyclopentadienyl,η6-arene) ligands were synthesized and characterized by X-ray crystallography. The strength of the metal-arene interaction in these systems was studied by variable-temperature NMR spectroscopy. Complexes with a C1 bridge between the cyclopentadienyl and arene moieties feature hemilabile coordination behavior of the ligand and consequently are active ethylene trimerization catalysts. Reaction of the titanium(IV) dimethyl cations with CO results in conversion to the analogous cationic titanium(II) dicarbonyl species. Metal-to-ligand backdonation in these formally low-valent complexes gives rise to a strongly bonded, partially reduced arene moiety. In contrast to the η6-arene coordination mode observed for titanium, the more electron-rich vanadium(V) cations [cyclopentadienyl-arene]V(NiPr2)(NC6H4-4-Me)+ feature η1-arene binding, as determined by a crystallographic study. The three different metal-arene coordination modes that we experimentally observed model intermediates in the cycle for titanium-catalyzed ethylene trimerization. The nature of the metal-arene interaction in these systems was studied by DFT calculations.

    Twenty years online! A brief history of palaeontologia electronica

    Get PDF
    This issue marks the 20th anniversary of Palaeontologia Electronica (PE). From modest beginnings as a series of discussions on the PaleoNet listserver in 1996, it has become a well-recognised venue for publication and dissemination of research, techniques, and resources in palaeontology. The journal has many “firsts” to its credit, from the first species named on the internet, the first scientific journal with a plain-language abstract, and the first PDF “reprints” in palaeontology. Over 20 years PE also tried many new approaches that weren’t subsequently adopted by the broader scientific community, such as audio abstracts and animated journal covers. This anniversary issue gives us an opportunity to look back at the beginnings of the journal, its initial aims and aspirations, and to chronicle its evolution. It is as much a reflection of the changing nature of PE as it is a reminder of the larger scale changes that have taken place in the world of palaeontology, the internet, and our community over the past two decades

    The pervasive role of biological cohesion in bedform development

    Get PDF
    Sediment fluxes in aquatic environments are crucially dependent on bedform dynamics. However, sediment-flux predictions rely almost completely on clean-sand studies, despite most environments being composed of mixtures of non-cohesive sands, physically cohesive muds and biologically cohesive extracellular polymeric substances (EPS) generated by microorganisms. EPS associated with surficial biofilms are known to stabilize sediment and increase erosion thresholds. Here we present experimental data showing that the pervasive distribution of low levels of EPS throughout the sediment, rather than the high surficial levels of EPS in biofilms, is the key control on bedform dynamics. The development time for bedforms increases by up to two orders of magnitude for extremely small quantities of pervasively distributed EPS. This effect is far stronger than for physical cohesion, because EPS inhibit sand grains from moving independently. The results highlight that present bedform predictors are overly simplistic, and the associated sediment transport processes require re-assessment for the influence of EPS

    A soft-bodied mollusc with radula from the Middle Cambrian Burgess Shale

    Get PDF
    Author Posting. © Nature Publishing Group, 2006. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 442 (2006): 159-163, doi:10.1038/nature04894.Odontogriphus omalus was originally described as a problematic non-biomineralized lophophorate organism. Here we reinterpret Odontogriphus based on 189 new specimens including numerous exceptionally well-preserved individuals from the Burgess Shale collections of the Royal Ontario Museum. This additional material provides compelling evidence that the feeding apparatus in Odontogriphus is a radula of molluscan architecture comprising two primary bipartite tooth rows attached to a radular membrane and showing replacement by posterior addition. Further characters supporting molluscan affinity include a broad foot bordered by numerous ctenidia located in a mantle groove and a stiffened cuticular dorsum. Odontogriphus has a radula similar to Wiwaxia corrugata but lacks a scleritome. We interpret these animals to be members of an early stem-group mollusc lineage that likely originated in the Neoproterozoic Ediacaran Period, providing support for the retention of a biomat-based grazing community from the late Precambrian until at least the Middle Cambrian.Our research was in part supported by a Post-Doctoral Natural Sciences and Engineering Research Council of Canada grant (to JBC-2005) and by a Swedish Research Council grant (to CS)

    Small shelly fossils and carbon isotopes from the early Cambrian (Stage 3-4) Mural Formation of western Laurentia

    Get PDF
    The extraordinary window of phosphatised and phosphatic Small Shelly Fossils (SSFs) during the early and middle Cambrian is an important testament to the radiation of biomineralising metazoans. While SSF are well known from most Cambrian palaeocontinents during this time interval, western Laurentia has relatively few SSF faunas. Here we describe a diverse SSF fauna from the early Cambrian (Stage 3-4) Mural Formation at three localities in Alberta and British Columbia, Canada, complemented by carbon isotope measurements to aid in a potential future bio-chemostratigraphic framework. The fauna expands the recorded SSF assemblage diversity in western Laurentia and includes several brachiopods, four bradoriids, three chancelloriids, two hyoliths, a tommotiid and a helcionellid mollusc as well as echinoderm ossicles and specimens of Microdictyon, Volborthella and Hyolithellus. New taxa include the tommotiid genus Canadiella gen. nov., the new bradoriid species Hipponicharion perforata sp. nov. and Pseudobeyrichona taurata sp. nov. Compared to contemporaneous faunas from western Laurentia, the fauna is relatively diverse, particularly in taxa with originally phosphatic shells, which appear to be associated with archaeocyathid buildups. This suggests that the generally low faunal diversity in western Laurentia may be at least partly a consequence of poor sampling of suitable archaeocyathan reef environments. In addition, the tommotiid Canadiella filigrana appears to be of biostratigraphic significance in Cambrian Stage 3 strata of western Laurentia and the unexpected high diversity of bradoriid arthropods in the fauna also suggests that this group may prove useful for biostratigraphic resolution in the region

    Congenital Diaphragmatic hernia – a review

    Get PDF
    Congenital Diaphragmatic hernia (CDH) is a condition characterized by a defect in the diaphragm leading to protrusion of abdominal contents into the thoracic cavity interfering with normal development of the lungs. The defect may range from a small aperture in the posterior muscle rim to complete absence of diaphragm. The pathophysiology of CDH is a combination of lung hypoplasia and immaturity associated with persistent pulmonary hypertension of newborn (PPHN) and cardiac dysfunction. Prenatal assessment of lung to head ratio (LHR) and position of the liver by ultrasound are used to diagnose and predict outcomes. Delivery of infants with CDH is recommended close to term gestation. Immediate management at birth includes bowel decompression, avoidance of mask ventilation and endotracheal tube placement if required. The main focus of management includes gentle ventilation, hemodynamic monitoring and treatment of pulmonary hypertension followed by surgery. Although inhaled nitric oxide is not approved by FDA for the treatment of PPHN induced by CDH, it is commonly used. Extracorporeal membrane oxygenation (ECMO) is typically considered after failure of conventional medical management for infants ≥ 34 weeks’ gestation or with weight >2 kg with CDH and no associated major lethal anomalies. Multiple factors such as prematurity, associated abnormalities, severity of PPHN, type of repair and need for ECMO can affect the survival of an infant with CDH. With advances in the management of CDH, the overall survival has improved and has been reported to be 70-90% in non-ECMO infants and up to 50% in infants who undergo ECMO
    corecore