23 research outputs found

    Intramolecular Energy and Electron Transfer Within a Diazaperopyrenium-Based Cyclophane

    Get PDF
    Molecules capable of performing highly efficient energy transfer and ultrafast photo-induced electron transfer in well-defined multichromophoric structures are indispensable to the development of artificial photosynthetic systems. Herein, we report on the synthesis, characterization and photophysical properties of a rationally designed multichromophoric tetracationic cyclophane, DAPPBox^(4+), containing a diazaperopyrenium (DAPP^(2+)) unit and an extended viologen (ExBIPY^(2+)) unit, which are linked together by two p-xylylene bridges. Both ^1H NMR spectroscopy and single crystal X-ray diffraction analysis confirm the formation of an asymmetric, rigid, box-like cyclophane, DAPPBox^(4+). The solid-state superstructure of this cyclophane reveals a herringbone-type packing motif, leading to two types of π···π interactions: (i) between the ExBIPY^(2+) unit and the DAPP^(2+) unit (π···π distance of 3.7 Å) in the adjacent parallel cyclophane, as well as (ii) between the ExBIPY^(2+) unit (π···π distance of 3.2 Å) and phenylene ring in the closest orthogonal cyclophane. Moreover, the solution-phase photophysical properties of this cyclophane have been investigated by both steady-state and time-resolved absorption and emission spectroscopies. Upon photoexcitation of DAPPBox^(4+) at 330 nm, rapid and quantitative intramolecular energy transfer occurs from the ^1*ExBIPY^(2+) unit to the DAPP^(2+) unit in 0.5 ps to yield ^1*DAPP^(2+). The same excitation wavelength simultaneously populates a higher excited state of ^1*DAPP^(2+) which then undergoes ultrafast intramolecular electron transfer from ^1*DAPP^(2+) to ExBIPY^(2+) to yield the DAPP^(3+•) – ExBIPY^(+•) radical ion pair in τ = 1.5 ps. Selective excitation of DAPP^(2+) at 505 nm populates a lower excited state where electron transfer is kinetically unfavorable

    Quantum Mechanical and Experimental Validation that Cyclobis(paraquat-p-phenylene) Forms a 1:1 Inclusion Complex with Tetrathiafulvalene

    Get PDF
    The promiscuous encapsulation of π-electron-rich guests by the π-electron-deficient host, cyclobis(paraquat-p-phenylene) (CBPQT^(4+)), involves the formation of 1:1 inclusion complexes. One of the most intensely investigated charge-transfer (CT) bands, assumed to result from inclusion of a guest molecule inside the cavity of CBPQT^(4+), is an emerald-green band associated with the complexation of tetrathiafulvalene (TTF) and its derivatives. This interpretation was called into question recently in this journal based on theoretical gas-phase calculations that reinterpreted this CT band in terms of an intermolecular side-on interaction of TTF with one of the bipyridinium (BIPY^(2+)) units of CBPQT^(4+), rather than the encapsulation of TTF inside the cavity of CBPQT^(4+). We carried out DFT calculations, including solvation, that reveal conclusively that the CT band emerging upon mixing TTF with CBPQT^(4+) arises from the formation of a 1:1 inclusion complex. In support of this conclusion, we have performed additional experiments on a [2]rotaxane in which a TTF unit, located in the middle of its short dumbbell, is prevented sterically from interacting with either one of the two BIPY^(2+) units of a CBPQT^(4+) ring residing on a separate [2]rotaxane in a side-on fashion. This [2]rotaxane has similar UV/Vis and ^1H NMR spectroscopic properties with those of 1:1 inclusion complexes of TTF and its derivatives with CBPQT^(4+). The [2]rotaxane exists as an equimolar mixture of cis- and trans-isomers associated with the disubstituted TTF unit in its dumbbell component. Solid-state structures were obtained for both isomers, validating the conclusion that the TTF unit, which gives rise to the CT band, resides inside CBPQT^(4+)

    Adaptation of Dynamic Covalent Systems of Imine Constituents to Medium Change by Component Redistribution under Reversible Phase Separation

    No full text
    A dynamic covalent library of interconverting imine constituents, dissolved in an acetonitrile/water mixture, undergoes constitutional reorganization upon phase separation induced by a physical stimulus (heat) or a chemical effector (inorganic salt, carbohydrate, organic solvent). The process has been made reversible, regenerating the initial library upon phase reunification. It represents the behavior of a dynamic covalent library upon reversible phase separation and its adaptation to a phase change, with up-regulation in each phase of the fittest constituents by component selection. Finally, the system exemplifies the splitting of a 2D (square) constitutional dynamic network into a 3D (cube) one
    corecore