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Abstract

Artificial photosynthetic systems for solar energy conversion exploit both covalent

and supramolecular chemistry to produce favorable arrangements of light-harvesting

and redox-active chromophores in space. An understanding of the interplay between

key processes for photosynthesis, namely light-harvesting, energy transfer, and pho-

toinduced charge separation and the design of novel, self-assembling components capa-

ble of these processes are imperative for the realization of multifunctional integrated

systems. We report our investigations on the potential of extended tetracationic cyclo-

phane/perylene diimide systems as components for artificial photosynthetic applica-

tions. We show how the selection of appropriate heterocycles, as extending units,

allows for tuning of the electron accumulation and photophysical properties of the

extended tetracationic cyclophanes. Spectroscopic techniques confirm energy transfer

between the extended tetracationic cyclophanes and perylene diimide is ultrafast and

quantitative, while the heterocycle specifically influences the energy transfer related

parameters and the acceptor excited state.

Introduction

The recently synthesized, extended tetracationic cyclophane,1 ExBox4+, comprising two

phenylene-extended bipyridinium units linked together by two p-xylylene (p-Xy) bridges to

form a rectangular macrocycle, has received attention on account of its potential for inclusion

in artificial photosynthetic systems. Numerous properties render ExBox4+ an attractive

candidate for such applications, including ultrafast, intermolecular charge transfer from a

suitable electron-rich guest,2 intramolecular through-bond charge transfer from the p-Xy

bridges to the extended bipyridinium units3 (ExBIPY2+) and multi-electron accumulation1,3

leading to an array of accessible mixed-valence states. Most recently, we reported4 the

first incidence of energy transfer (EnT), an essential process of all biological photosynthetic

systems,5–10 within the extended tetracationic cyclophane (Ex1Box) family. The discovery of
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EnT within Ex1Box systems opens up new possibilities for greater complexity and biomimetic

function with regard to their inclusion in switchable, photoactive, mechanically interlocked

systems11,12 and light-harvesting arrays for device applications.13–15

Perylene diimides (PDIs) have received much attention for their high thermal, chemical,

electrochemical and photophysical stability.13 Recent studies have found particular suitabil-

ity of this highly versatile family of compounds in applications such as organic photocataly-

sis16 and solar water splitting,17,18 one of the most important photosynthetic processes due

to its potential to provide a large scale, clean source of carbon-free energy.19

We develop our understanding of the viability of combined Ex1Box/PDI systems to act as

components in artificial photosynthetic systems, on account of their electron-accumulation

and light-harvesting properties.

In order to comprehensively characterize the Ex1Box/PDI systems, we synthesized three

series of ExBIPY2+ species. Firstly, the extended methyl viologens20 (MExVs) where pheny-

lene, thiophene and selenophene are used as the extending units to yield MPV2+, MTV2+

and MSeV2+, respectively (as shown in the ESI). The MExVs serve as controls for the second

series, the Ex1Boxes, the corresponding members of which are ExBox4+, TExBox4+ and

SeExBox4+ (Figure 1). The third series further increases the complexity of the ExBIPY2+

chemical environment via complexation and subsequent catenation21,22 of the Ex1Boxes with

a dicationic PDI derivative. The three Ex1Box/PDI [2]catenanes (ExCats) are designated

ExCat6+, TExCat6+ and SeExCat6+ (Figure 2).

Results and discussion

Synthesis and Structural characterization

The MExVs, MTV2+ and MSeV2+, and Ex1Boxes, TExBox4+ and SeExBox4+, were

synthesized via analogous protocols1 to MPV2+ and ExBox4+ (as detailed in the ESI).

TExBox4+ and SeExBox4+ were obtained in yields of 37 % and 44 %, respectively, which

3



are significantly higher than the non-templated yield reported1 for ExBox4+ (19 %), pre-

sumably on account of the reduced symmetry of TExBox4+ and SeExBox4+, which induces

lower bond angle strain in the transition state of the ring closing reaction. The 1H NMR spec-

tra of the Ex1Boxes and their corresponding X-ray crystal structures are shown in Figures 1

and S1.

The Hay modification of the terminal alkyne Glaser homocoupling reaction23,24 in aque-

ous media was selected for the catenation procedure25 (Figure 2) as complexation between

the Ex1Boxes and PDI-E1 was observed only in water and not in organic solvents (Fig-

ures S2-S4). Binding constants on the order of 104 M−1 were obtained by isothermal titration

calorimetry (Figure S7). The reaction conditions employed consisted of an aerated aqueous

solution of PDI-E2 (1 mM), three equivalents of Ex1Box host and excesses of CuCl and

tetramethylethylenediamine, stirred at 30 ◦C. Upon completion (monitored by analytical

HPLC), the reaction mixture was centrifuged to remove the solid copper residue. The super-

natant was subjected to reverse phase column chromatography and the fractions containing

pure product, analyzed by analytical HPLC, were combined and lyophilized. The trifluoroac-

etate counterions were then exchanged for chloride counterions using tetrabutylammonium

chloride (NBu4Cl).

The catenanes, ExCat6+, TExCat6+ and SeExCat6+ were obtained in yields of 19%,

14% and 16%, respectively. 1H NMR of the ExCats revealed shifts in the resonances asso-

ciated with the Ex1Box components nearly identical to those identified as complexed peaks

via titrations (Figures 2, S2-S3, S5), while DOSY NMR revealed that both PDI and Ex1Box

components diffuse at equal rates (Figure S6). X-ray crystallography also confirmed the

acquisition of the target compounds,26 which reveal closely-packed extended superstructures

supported by an extensive network of C-H – F interactions between the aromatic hydrogen

atoms of the Ex1Boxes and fluorine atoms of the PF6
− counterions (Figures S8-S9).
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Electrochemical Characterization

Cyclic voltammetry (CV) of the MExVs, Ex1Boxes and ExCats was performed in dimethyl

sulfoxide (Me2SO) at a concentration of 1 mM with a sweep rate of 50 mV s−1 against a

Ag/AgCl reference electrode. All redox couple potentials are summarized in Table 1. CV

(Figure S10) reveals that each of the MExVs undergo two one-electron reductions. MPV2+

possesses the most negative reduction potential, which is smooth and non-broadened, in-

dicating little or no communication between the two pyridinium centers. MSeV2+ and

MTV2+ posses more positive reduction potentials with small and significant shouldering,

respectively, demonstrating progressively higher levels of communication.

Upon incorporation of the ExBIPY2+ units into the Ex1Boxes, their redox properties are

significantly altered (Figure S11). ExBox4+ reveals two overlapping two-electron reduction

peaks without any obvious shouldering. The degree of communication within ExBox4+ in

Me2SO is significantly lower than that found in dimethylformamide1 (DMF). TExBox4+

and SeExBox4+, in line with the previous trend, display more positive reduction poten-

tials. There is also significantly greater separation of the two two-electron redox couples,

indicating greater communication within TExBox4+ and SeExBox4+, which is attributed

to higher conformational restriction of their constituent aromatic rings, on account of the

lower symmetry of their extending units. A close examination of the X-ray crystal structures

of the Ex1Boxes supports the notion that their relative conformations in the solution phase

and solid state are similar.

Cyclic voltammograms of the ExCats exhibit three distinct redox couples (Figure S12).

The first two represent the first and second one-electron reductions of the PDI component.

The ExCats also exhibit a third redox couple with a much higher peak current than the

first two reduction events, which represents the four one-electron reductions of the Ex1Box

components. This is likely on account of structural distortion of the Ex1Boxes by the PDI

guest, which eliminates any communication between the pyridinium units, thus facilitating

their simultaneous reduction. As such, the Ex1Box redox couples are smooth and non-
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broadened. Thus, CV illustrates how all ExCats are capable of incrementally accepting

up to six electrons, with tuneable reduction potentials over a range of 570 mV (-210 – -

780 mV), where the PDI component’s reduction potential may be altered over 270 mV (-210

– -480 mV). The reversibility of the redox peaks illustrates good electrochemical stability at

a 50 mV s−1 scan rate.27 The accessibility of various, stable mixed valence redox states is an

essential property of artificial photosynthetic reaction centers, where the build up of charge

enables the realization of multi-electron processes such as water splitting.28–30

Steady-state Photophysical Characterization

Having investigated the structural and electrochemical properties of the three series, we

moved onto their photophysical properties in water. Steady-state electronic absorption and

fluorescence emission studies (Figure 3) show that MPV2+ and ExBox4+ possess the highest

singlet excitation energy (1*ES) in their respective series, while MSeV2+ and SeExBox4+

possess the lowest. MTV2+ and TExBox4+ displayed the highest fluorescence quantum

yields (Φf, 0.77 and 0.37, respectively), while MSeV2+ and SeExBox4+ displayed the lowest

(0.0017 and 0.0027, respectively). The electronic absorption maxima show negligible shifting

between the respective members of the MExV and Ex1Box series. However, the fluorescence

emission maxima of the Ex1Boxes are all redshifted relative to the MExVs. As such, the

1*ES of the Ex1Boxes are approximately 0.08 eV lower than their respective MExVs. The

above parameters are detailed in Table 2.

The steady-state electronic absorption and fluorescence emission spectra of the ExCats

in water are shown in Figure 4. An essential property of any solar energy conversion device

is the ability to absorb light within the solar spectrum as measured at the earth’s surface.31

The spectral excitation window of ExBox4+ within ExCat6+, defined by the full width half

maximum of the electronic absorption profile, lies outside the visible spectrum. However,

the lower HOMO-LUMO gap of TExBox4+ and SeExBox4+ within their corresponding

ExCats, induced by the more electron rich 5-membered heterocycles, leads to an overlap
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of their excitation windows with the visible part of the solar spectrum. Thus, the light-

harvesting properties of the Ex1Boxes may be tuned by changing the identity of the extending

unit and in conjunction with the PDI component, the ExCats are able to absorb over most of

the solar spectrum. The excitation windows of the Ex1Boxes within the ExCats are detailed

in Table 4.

Lastly, the fluorescence excitation spectra of the ExCats (Figure 4, λmon = 550 nm)

bear very strong similarity to their corresponding absorption spectra within the absorption

region of the Ex1Box components, clearly illustrating the EnT process active between the

ExBIPY2+ and PDI chromophores.

Time-resolved Photophysical Characterization

Time-resolved photophysical experiments were next carried out in water to gain a greater

insight into the excited state dynamics of the Ex1Boxes and EnT dynamics of the ExCats.

All excited state relaxation time constants are detailed in Table 3.

Firstly, the MExVs were investigated by femtosecond transient absorption (fsTA). We

do not observe ground state bleaching of the MExVs or Ex1Boxes due to a combination of

the strong, overlapping absorption of the transient species with the ground state absorption

and the 430 nm edge of the probe window. MPV2+, MTV2+ and MSeV2+ were excited

at 330, 414 and 414 nm, respectively, with 150 fs pulses. Upon excitation of MPV2+, the

first excited singlet state, 1*MPV2+, is produced, which decays with an effective lifetime,

τ eff = 1330 ± 15 ps, by fluorescence to the ground state, 0MPV2+ (Figures S13-S14). Time-

correlated single photon counting (TCSPC) recorded a similar lifetime of τ eff = 1.40 ns

(Figure S35). Spin-orbit intersystem crossing (SO-ISC) affords a minor contribution to the

decay, producing the first excited triplet state, 3*MPV2+, whose decay persists beyond 7 ns,

the experimental time scale of our fsTA setup. Indeed, all triplet states investigated below

persisted beyond this time scale.

1*MTV2+ decayed in τ eff = 1080 ± 8 ps by fsTA (Figures S13, S15), while TCSPC
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recorded a slightly longer lifetime of τ ef f = 1.85 ns (Figure S35). SO-ISC again affords a

small contribution decay, yielding 3*MTV2+.

MSeV2+ displayed markedly different behavior (Figures S13, S16). 1*MSeV2+ decayed

rapidly via SO-ISC to produce 3*MSeV2+ in τ eff = 5.1 ± 0.1 ps. The almost exclusive

contribution of SO-ISC to the decay kinetics32 is attributed to the internal heavy atom

effect33 facilitated by the selenium atom, which also manifests in the Φf of MSeV2+ (see

Table 2).

The Ex1Boxes were then investigated under the same conditions used for the MExVs

(Figures 5, S17). A schematic illustration of the excited state dynamics of all Ex1Boxes in

water is shown in Scheme 1.

The initial fsTA spectrum of TExBox4+ is characterized by absorptions at 482, 734,

1081 and 1246 nm, which are assigned to 1*TExBox4+ (Figure S19), which decays via two

parallel pathways in τ eff = 447 ± 4 ps. The first pathway is via fluorescence to 0TExBox4+

(Figure 3), the lifetime of which (τ f) may be estimated by the effective lifetime of 1*MTV2+.

The second pathway is the intramolecular, through-bond reduction of ExBIPY2+ by the p-

Xy bridge, resulting in a photoinduced charge separated state,3 TExBIPY+-p-Xy+, in a

time, τPCS, characterized by absorbances at 576, 918 and 1065 nm.

1

τ ef f
=

1

τ f
+

1

τPCS

(1)

The relation between τ ef f , τ f and τPCS is given by Equation 1. Thus, the approximation,

τPCS ≈ 763 ps, may be calculated. Visible-infrared spectroelectrochemistry corroborated

the TExBIPY+-p-Xy+ assignment. The spectrum reveals maxima at 578, 924 and 1066 nm

(Figure S37), which is nearly identical to the reconstituted fsTA spectrum. The approximate

free energy of photoinduced charge separation (PCS), ∆GPCS, defined as the difference

between the Ex1Box singlet energy (see Table 2), and the ion pair energy of the photoinduced

charge separated state, ∆GIP (see Equation 2) was then calculated.
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∆GPCS = ∆GIP − 1∗E (2)

∆GIP = Eox − Ered + ∆U + ∆Gsolv (3)

∆GIP may be calculated by the equation developed by Weller34 (Equation 3). Eox is

the oxidation potential of the p-Xy bridge (1.98 V vs. Ag/AgCl),35 and Ered is the first

reduction potential of the ExBIPY2+ unit, here taken as the first reduction potential of the

corresponding MExV (see Table 1). ∆U, a coulombic correction factor, may be neglected

as it has been shown to be small in ExBox4+ in polar media.3 ∆Gsolv, a solvent correction

factor, may also be neglected on account of the high dielectric constants of water and Me2SO.

Thus, in the case of TExBox4+, ∆GPCS is found to be approximately -0.31 eV, illustrating

that PCS is an energetically downhill and spontaneous process.

Charge recombination then occurs in τCR = 2850 ± 60 ps, resulting in the formation of

3*TExBox4+, via spin-orbit charge transfer intersystem crossing36 (SOCT-ISC), on account

of the favorable perpendicular orientation of the ExBIPY2+ and p-Xy chromophores, char-

acterized by absorbances at 576, 914 and 1062 nm. The quantum yield for the formation of

3*TExBox4+ in solution is unknown, as charge recombination to 0TExBox4+ likely occurs

in parallel with SOCT-ISC.

3*TExBox4+ was then investigated in the solid state via phosphorescence emission spec-

troscopy (PES, Me2SO, 77 K, Figure S38), which displayed an emission signal with a max-

imum at 614 nm, giving a triplet energy (1*ET ) of 2.02 eV. Time-resolved phosphorescence

emission spectroscopy (TRPES, Me2SO, 77 K, λmon = 614 nm) revealed a solid state lifetime

of τ p = 10.6 ms, which is typical for organic compounds under such conditions.37

The fsTA spectrum38 of 1*SeExBox4+ is characterized by four absorbances at 497, 758,

1160 and 1309 nm. 1*SeExBox4+ is very short lived, decaying in τ eff = 6.6 ± 0.1 ps, prin-

cipally via SO-ISC to 3*SeExBox4+, characterized by absorptions at 475, 890 and 1027 nm.

This singlet lifetime is very similar to that of 1*MSeV2+, while the Φf of SeExBox4+ (see
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Table 2) demonstrates that fluorescence contributes negligibly to singlet decay. Relaxation of

3*SeExBox4+ occurs in τ eff = 2280 ± 870 ps. Based on the spectral similarities of the 2 ns

component (Figures 5, S20) to 3*SeExBox4+, it is attributed to triplet-triplet annihilation

arising from collisional deactivation of 3*SeExBox4+ with either another 3*SeExBox4+

species or triplet oxygen (solutions were not deoxygenated prior to the laser experiments).

Residual 3*SeExBox4+ persists beyond 7 ns. The high efficiency of SO-ISC means that it

kinetically outcompetes PCS. As such, despite the negative ∆GPCS for SeExBox4+ (ap-

proximately -0.35 eV), no evidence for SeExBIPY+-p-Xy+ (Figure S37) was observed in

the fsTA spectra. 3*SeExBox4+ was further probed using nanosecond transient absorption

(nsTA, Figures S31-S32), which revealed a short triplet lifetime of τ eff = 2.80 ± 0.01 µs in

oxygenated solution at room temperature.

PES (Me2SO, 77 K) revealed a signal with a peak maximum at 640 nm, yielding a 1*ET

of 1.94 eV (Figure S38). TRPES (λmon = 640 nm) revealed a triplet lifetime of τ p = 0.2 ms,

which is two orders of magnitude greater than that measured using nsTA. Although fairly

typical for organic phosphorescent compounds, this lifetime is still relatively short given the

efficiency of triplet formation, which is likely on account of the internal heavy atom effect,

which increases the rate of SO-ISC from 3*SeExBox4+ to 0SeExBox4+.

Although already documented in organic media,3 we repeated our studies of the excited

state dynamics of ExBox4+ in water. Upon excitation, 1*ExBox4+ is produced, character-

ized by a single, intense absorbance at 499 nm, very similar to that observed in MeCN,3 and

a rising absorbance into the NIR region, which undergoes initial relation in τ r = 73 ± 1 ps.

1*ExBox+4 decays further in τ eff = 413 ± 10 ps, and is replaced by a 3*ExBox4+, charac-

terized by a single peak at 490 nm. Interestingly, evolution of ExBIPY+-p-Xy+, previously

observed upon decay of 1*ExBox4+ in MeCN and characterized by a broad 900-1200 nm

absorbance, is not observed in water.

The absence of an observed ExBIPY+-p-Xy+ state was an unexpected result given the

strong driving force for PCS.3 As the decay of 1*ExBox4+ is approximately three times
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shorter than that of 1*MPV2+, it is unlikely that 1*ExBox4+ decays directly to 0ExBox4+

and 3*ExBox4+. Inverted reaction kinetics, whereby the formation of the ExBIPY+-p-Xy+

state is much slower than its decay via charge recombination, is the most likely explanation.

A simplified analysis of the kinetics of charge recombination, using Marcus-Hush theory (see

ESI), shows that the rate is approximately thirteen times faster in water than in MeCN. Using

Equation 1 and the lifetime of 1*MPV2+ as an approximation for τ f, one may postulate

τPCS ≈ 599 ps for 1*ExBox4+, which is similar to that calculated for 1*TExBox4+.

PES (Me2SO, 77 K) revealed an ExBox4+ triplet energy of 2.14 eV, while TRPES

(λmon = 515 nm) was best fitted using a biexponential function with time constants τ p1 = 0.29 s

(26 %) and τ p2 = 0.94 s (74 %). The approximate one second phosphorescence lifetime of

3*ExBox4+ is on the long end of the scale for organic molecules.39–41

Having characterized the relaxation dynamics of the Ex1Boxes, we turned our attention

to the energy transfer dynamics of the ExCats. Investigations by fsTA were conducted

using pump pulse wavelengths that selectively excite the Ex1Box donors (Figures 6, S21).

Schematic descriptions of the ExCat relaxation dynamics are shown in Scheme 2.

In all cases, the first excited singlet states of the Ex1Box donors were not observed at all

upon photoexcitation (Figures S22-S24), indicating excited state deactivation occurs within

the 250 fs response time of the instrument. We can, therefore, conclude that the excited

singlet states of the Ex1Boxes within the three ExCats have lifetimes of less than 250 fs.

η =
1

1 + τ ′/τ
(4)

Equation 4 (τ = deactivation lifetime of the donor by all pathways in the absence of the

acceptor (measured by fsTA above, see Table 3), τ ′ = lifetime of the energy transfer process

between donor and acceptor) may then be used to calculate the EnT efficiency (η) between

PDI and the three Ex1Boxes. Taking τ ′ to be less than 250 fs, η is found to be greater than

99.99 % for ExCat6+ and TExCat6+, demonstrating that EnT is quantitative. In the case

of SeExCat6+, η is found to be greater than 96 %, which is particularly remarkable, given
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its essentially zero fluorescence quantum yield (Φf < 0.002).

Such high EnT efficiencies are facilitated by the small donor-acceptor separations within

the catenane structure (∼ 3.5 Å). The crystal structures of the catenanes show that the van

der Waals radii of the PDI and Ex1Box components overlap, such that molecular orbital

overlap should allow EnT to proceed via the electron exchange Dexter mechanism,42 which

is likely the dominant mechanism. The documentation of ultrafast charge transfer (< 250 fs)

between ExBox4+ and perylene2 demonstrates that such a mechanism involving electron

exchange is certainly feasible. Although Förster theory43 predicts critical transfer radii (see

Table 4) such that EnT should be quantitative within the catenanes, at a donor-acceptor

separation of 3.5 Å the point dipole approximation of Föster theory breaks down. How-

ever, a short-range multipolar description of EnT could, potentially, also account for the

observed rate. Such an approach has been previously used to describe EnT within natural

photosynthetic systems.44

Subsequent relaxation of the excited PDI components was further monitored. fsTA re-

veals that 1*PDI is fully evolved within 1 ps for all ExCats (Figures 6, S22-S24). In both

ExCat6+ and TExCat+6, the ground state bleach (445-580 nm), stimulated emission (575-

630 nm), and excited state absorption features, in both visible and NIR regions, all decay

with the same time constants as determined by a global fit to all of these features (see

Figure S22-S23), which is in good agreement with the fluorescence lifetimes determined by

TCSPS. 1*PDI decays to the ground state mainly via fluorescence with a time constant of

τ eff = 5.85 ± 0.03 ns, for ExCat6+ and τ eff = 6.63 ±0.03 ns for TExCat6+.

SeExCat6+, once again, displayed very different behavior. Upon excitation, we imme-

diately observe the 1*PDI spectrum. The stimulated emission and excited state absorption

bands decay very quickly (fsTA, τ ef f = 1.56 ± 0.04 ns), while the PDI ground state bleach at

approximately 530 nm remains throughout the experimental window. The higher energy PDI

bleaches also remain, but rise with a similar time constant (global fitting, Figure S24) from

the formation of a positive overlapping absorption corresponding to 3*PDI, characterized45
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by peak maxima at 485, 514, and 576 nm.

1

τ ef f
=

1

τ f
+

1

τ ISC

(5)

Assuming τ f = 3.7 ns for 1*PDI (taken from the fsTA analysis of the inclusion complex,46

PDI-E1⊂CB[8], Figures S29-S30), τ ISC may be calculated using Equation 5, yielding

τ ISC ≈ 2.7 ns. TCSPC recorded a 1*PDI lifetime of τ ef f = 1.75 ns (Figure S36), which is

in good agreement with fsTA, while Φf is heavily quenched (0.18) relative to ExCat6+ and

TExCat6+ (0.90 and 0.77, respectively). The value of τ f = 3.7 ns for PDI-E1⊂CB[8] is

similar to that of destacked PDIs measured in organic media,47 indicating that the polarity

of the CB[8] cavity is similar to that of organic solvents. However, as the cavities of the

Ex1Boxes are smaller than that of CB[8], the microenvironments of their respective cavities

are likely to be different. Therefore, one may also approximate the fluorescence lifetime of

SeExCat6+ as τ f ≈ 6 ns (similar to that of ExCat6+), which yields a value of τ ISC ≈ 2.1 ns.

Comparison of the 1*PDI relaxation dynamics upon direct excitation (λex = 540 nm) reveals

similar behavior to that observed upon indirect excitation (Figures S25-S28).

SeExCat6+ was further investigated by nsTA and transient continuous wave electron

paramagnetic resonance (TCW-EPR) to probe 3*PDI. nsTA revealed a short triplet lifetime

of τ ef f = 5.28 ± 0.03 µs in oxygenated solution at room temperature (Figures S33-S34),

while TCW-EPR (85 K, Figure S39) shows the characteristic emission(e)-absorption(a) po-

larization pattern, e,e,e,a,a,a, for 3*PDI formed via SO-ISC.48 As such, SeExCat6+ rep-

resents non-covalent method to generate the triplet state of a large, monomeric, aromatic

chromophore in high yield in aqueous media via the external heavy atom effect, where El

Sayed’s selection rules formally forbid 1*T(π-π*)←1*S(π-π*) SO-ISC.
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Conclusion

Our work illustrates how extending components may be used to tune the light-harvesting

antenna properties of Ex1Boxes to cover a significant portion of the solar spectrum and gen-

erate a high energy, singlet state PDI in quantitative yield via energy transfer. As such,

the alteration of the chemical environment of extended bipyridiniums allows for the tai-

lored design of a family of organic, optoelectronic materials, exhibiting excellent electron

accumulation properties, capable of incrementally accepting and stabilizing up to six elec-

trons with tuneable redox potentials. Such properties afford potential for these materials in

light-harvesting and catalytic applications, ranging from multi-electron catalytic processes,

such as water splitting, to organic synthetic photocatalysis in water. Our work has also

expanded our understanding of the excited state behavior of Ex1Boxes, illustrating their

phosphorescence properties.

A drawback is that upon tuning the HOMO-LUMO gap of ExBIPY2+s using heavy

atoms, energy is lost in the excited state PDI upon conversion to the triplet state. This

could be circumvented by using fused heterocycle extending components as an alternative

means to achieving solar spectrum coverage outside the presented range. Nevertheless, the

ability of SeExCat6+ to efficiently access PDI triplet states in high triplet quantum yields

could find utility in triplet photosensitizing applications49 in both aqueous and organic me-

dia. SeExCat6+ also demonstrates how the design element of the ExCats allows for highly

efficient EnT from an essentially nonfluorescent antenna.

The mono and higher-order functionalization of Ex1Boxes50 and PDIs13 may also allow

for the synthesis of novel ExCat derivatives capable of incorporating extra chromophores for

additional electronic function and of surface attachment via multiple chemistries.
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Scheme 1: Energetics and excited state relaxation dynamics for fluorescence (τ f ), spin-orbit
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Table 1: Electrochemical half-wave redox potentials of the MExVs, Ex1Boxes and ExCats
in Me2SO

Compound 1st E1/2 (V)a 2nd E1/2 (V)a 3rd E1/2 (V)a

MPV2+ -0.82 – –

MTV2+ -0.74 -0.85 –

MSeV2+ -0.64 -0.76 –

ExBox4+ -0.82 – –

TExBox4+ -0.49 -0.63 –

SeExBox4+ -0.34 -0.46 –

ExCat6+ -0.25 -0.48 -0.78

TExCat6+ -0.21 -0.45 -0.68

SeExCat6+ -0.21 -0.42 -0.61

PDI-E1 -0.34 -0.51 –

a Determined by cyclic voltammetry. A glassy carbon working electrode, an Ag/AgCl reference electrode

and a platinum counter electrode were used to characterize 1 mM Me2SO solutions of the

hexfluorophosphate salts of the analytes at 298 K, with 0.1 M TBAPF6 serving as the supporting

electrolyte at a scan rate of 50 mVs−1. Due to the closely overlapping peaks of SeExBox4+ and

MSeV2+, an error of ± 0.2 V is estimated for their half-wave redox potentials.

Table 2: Steady-state photophysical properties of the Ex1Boxes and MExVs

Compound
Electronic Absorption

Maximum (nm)
Fluorescence Emission

Maximum (nm)a
Fluorescence

Quantum Yield (Φf)
b

Singlet
Energy (eV)c

Triplet
Energy (eV)d

ExBox4+ 318 386 0.21 3.48 2.14

MPV2+ 314 371 0.68 3.59 –

TExBox4+ 371 439 0.37 3.03 2.02

MTV2+ 370 416 0.77 3.11 –

SeExBox4+ 378 454 0.0027 2.96 1.94

MSeV2+ 380 434 0.0017 3.02 –

a Excitation wavelengths (λex) used for each ExTC/MExV corresponded to its electronic absorption

maximum as detailed in the first column. b See ESI for conditions used for fluorescence quantum yield

determination. c Determined by the intersection of the normalized electronic absorption and fluorescence

emission spectra. d Determined by the peak maxima of the phosphorescence emission spectra. Triplet

energies were not obtained for MExVs.
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Table 3: Time constants (τ , ps) for the decay of the singlet excited states of the MExVs and
Ex1Boxes, as measured by femtosecond transient absorption spectroscopy in water

Compound 1*Singlet(h)a 1*Singlet Decay Mechanismb

ExBox4+ 73 ± 10 413 ± 7 see text

MPV2+ 96 ± 1 1330 ± 15 Fluorescence, IC

TExBox4+ – 447 ± 4 Fluorescence, PCSc

MTV2+ 71 ± 2 1080 ± 8 Fluorescence, IC

SeExBox4+ – 6.6 ± 0.1 SO-ISC

MSeV2+ – 5.1 ± 0.1 SO-ISC

a ”(h)” indicates a vibrationally excited state. b IC = internal conversion, SO-ISC = spin-orbit intersystem

crossing. c PCS = photoinduced charge separation. Charge recombination occurs with a lifetime of

2850 ps.

Table 4: Photophysical properties of the ExCats in water

Compound
Förster

Distance (Å)a
Fluorescence

Quantum Yieldb

Fluorescence
Lifetime (τ , ns)c

Excitation
Window (nm)d

PDI 1*Singlet
lifetime (τ , ns)e

ExCat6+ 26.3f 0.90 6.30 293 - 360 (335) 5.85 ± 0.03

TExCat6+ 37.9 0.76 6.45 351 - 414 (377) 6.63 ± 0.03

SeExCat6+ 18.2 0.18 1.75 355 - 430 (391) 1.56 ± 0.04

a Determined using the absorption spectrum of PDI-E1⊂CB[8] as an approximation for the disaggregated

absorption spectrum of PDI in water and a κ2 value of 2/3. b Determined by relative measurement with

Rhodamine 6G in ethanol as fluorescence quantum yield standard (Φf = 0.95). c Determined by TCSPC.

Excitation wavelength (λex) = 510 nm, monitored wavelength (λmon) = 550 nm, error ± 3%. d Defined as

the FWHM of the ExTC 1*← 0S absorption peaks (absorption maxima are shown in parenthesis).
e Determined by fsTA. Indirect excitation (λex = 330 nm for ExCat6+; λex = 414 nm for TExCat6+ and

SeExCat6+). f from ref.4
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