1,072 research outputs found

    Continuously-variable survival exponent for random walks with movable partial reflectors

    Full text link
    We study a one-dimensional lattice random walk with an absorbing boundary at the origin and a movable partial reflector. On encountering the reflector, at site x, the walker is reflected (with probability r) to x-1 and the reflector is simultaneously pushed to x+1. Iteration of the transition matrix, and asymptotic analysis of the probability generating function show that the critical exponent delta governing the survival probability varies continuously between 1/2 and 1 as r varies between 0 and 1. Our study suggests a mechanism for nonuniversal kinetic critical behavior, observed in models with an infinite number of absorbing configurations.Comment: 5 pages, 3 figure

    Artificial Intelligence in Radiation Therapy

    Get PDF
    Artificial intelligence (AI) has great potential to transform the clinical workflow of radiotherapy. Since the introduction of deep neural networks, many AI-based methods have been proposed to address challenges in different aspects of radiotherapy. Commercial vendors have started to release AI-based tools that can be readily integrated to the established clinical workflow. To show the recent progress in AI-aided radiotherapy, we have reviewed AI-based studies in five major aspects of radiotherapy including image reconstruction, image registration, image segmentation, image synthesis, and automatic treatment planning. In each section, we summarized and categorized the recently published methods, followed by a discussion of the challenges, concerns, and future development. Given the rapid development of AI-aided radiotherapy, the efficiency and effectiveness of radiotherapy in the future could be substantially improved through intelligent automation of various aspects of radiotherapy

    Anomalous f-electron Hall Effect in the Heavy-Fermion System CeTIn5_{5} (T = Co, Ir, or Rh)

    Full text link
    The in-plane Hall coefficient RH(T)R_{H}(T) of CeRhIn5_{5}, CeIrIn5_{5}, and CeCoIn5_{5} and their respective non-magnetic lanthanum analogs are reported in fields to 90 kOe and at temperatures from 2 K to 325 K. RH(T)R_{H}(T) is negative, field-independent, and dominated by skew-scattering above \sim 50 K in the Ce compounds. RH(H0)R_{H}(H \to 0) becomes increasingly negative below 50 K and varies with temperature in a manner that is inconsistent with skew scattering. Field-dependent measurements show that the low-T anomaly is strongly suppressed when the applied field is increased to 90 kOe. Measurements on LaRhIn5_{5}, LaIrIn5_{5}, and LaCoIn5_{5} indicate that the same anomalous temperature dependence is present in the Hall coefficient of these non-magnetic analogs, albeit with a reduced amplitude and no field dependence. Hall angle (θH\theta_{H}) measurements find that the ratio ρxx/ρxy=cot(θH)\rho_{xx}/\rho_{xy}=\cot(\theta_{H}) varies as T2T^{2} below 20 K for all three Ce-115 compounds. The Hall angle of the La-115 compounds follow this T-dependence as well. These data suggest that the electronic-structure contribution dominates the Hall effect in the 115 compounds, with ff-electron and Kondo interactions acting to magnify the influence of the underlying complex band structure. This is in stark contrast to the situation in most 4f4f and 5f5f heavy-fermion compounds where the normal carrier contribution to the Hall effect provides only a small, T-independent background to RH.R_{H}.Comment: 23 pages and 8 figure

    Pilot, randomized, placebo-controlled clinical field study to evaluate the effectiveness of bupivacaine liposome injectable suspension for the provision of post-surgical analgesia in dogs undergoing stifle surgery

    Get PDF
    Abstract Background Local anesthetics are an important component of perioperative pain management, but the duration of action of available products is limited. We hypothesized that a single local infiltration of a novel bupivacaine liposome injectable suspension (AT-003) would provide clinically effective analgesia over a 72-h period. In a masked, randomized, placebo-controlled, multi-center pilot field study, dogs undergoing lateral retinacular suture placement for cranial cruciate insufficiency were randomly assigned to surgical site infiltration with AT-003 (5.3 mg/kg) or an equivalent volume of saline. Infiltration of the surgical site was done prior to closure. Primary outcome measure was the Glasgow Composite Measure Pain Scale (CMPS-SF) assessed prior to surgery and at 2, 4, 8, 12, 24, 30, 36, 48, 54, 60 and 72 h following surgery by trained individuals. Provision for rescue analgesia was employed. Repeated measures analysis of variance were utilized to test for possible differences between treatment groups and a success/failure analysis was also employed, based on the need for rescue analgesia. Results Forty-six dogs were enrolled and evaluated. For CMPS-SF scores there was a significant overall treatment effect (p = 0.0027) in favor of AT-003. There were significantly more successes in the AT-003 group compared to placebo over each time period (p = 0.0001 for 0–24 h, p = 0.0349 for 0–48 h, and p = 0.0240 for 0-72 h). No significant adverse events were seen. Conclusions AT-003 (bupivacaine liposome injectable suspension) provided measurable local analgesia over a 72-h period following post-stifle surgery surgical site tissue infiltration. Further work is indicated to develop this product for clinical use

    p27 Deficiency Cooperates with Bcl-2 but Not Bax to Promote T-Cell Lymphoma

    Get PDF
    The effect of Bcl-2 on oncogenesis is complex and expression may either delay or accelerate oncogenesis. The pro-oncogenic activity is attributed to its well characterized anti-apoptotic function while the anti-oncogenic function has been attributed to its inhibition of cellular proliferation. Recent studies demonstrate that p27 may mediate the effects of Bcl-2 on cellular proliferation. We hypothesized that p27 may suppress tumor formation by Bcl-2 family members. To test this hypothesis, cell cycle inhibition and lymphoma development were examined in Lck-Bcl-2 and Lck-Bax38/1 transgenic mice deficient in p27. Strikingly, p27 deficiency synergistically cooperates with Bcl-2 to increase T cell hyperplasia and development of spontaneous T cell lymphomas. Within 1 year, >90% of these mice had developed thymic T cell lymphomas. This high penetrance contrasts with a one year incidence of <5% of thymic lymphoma in Lck-Bcl-2 or p27 −/− mice alone. In contrast, p27 deficiency had no effect on tumor formation in Lck-Bax38/1 transgenic mice, another model of T cell lymphoma. Histologically the lymphomas in p27 −/− Lck-Bcl-2 mice are lymphoblastic and frequently involve multiple organs suggesting an aggressive phenotype. Interestingly, in mature splenic T cells, Bcl-2 largely retains its anti-proliferative function even in the absence of p27. T cells from p27 −/− Lck-Bcl-2 mice show delayed kinetics of CDK2 Thr-160 phosphorylation. This delay is associated with a delay in the up regulation of both Cyclin D2 and D3. These data demonstrate a complex relationship between the Bcl-2 family, cellular proliferation, and oncogenesis and demonstrate that p27 up-regulation is not singularly important in the proliferative delay observed in T cells expressing Bcl-2 family members. Nonetheless, the results indicate that p27 is a critical tumor suppressor in the context of Bcl-2 expression

    Functional Electrical Stimulation of Intrinsic Laryngeal Muscles under Varying Loads in Exercising Horses

    Get PDF
    Bilateral vocal fold paralysis (BVCP) is a life threatening condition and appears to be a good candidate for therapy using functional electrical stimulation (FES). Developing a working FES system has been technically difficult due to the inaccessible location and small size of the sole arytenoid abductor, the posterior cricoarytenoid (PCA) muscle. A naturally-occurring disease in horses shares many functional and etiological features with BVCP. In this study, the feasibility of FES for equine vocal fold paralysis was explored by testing arytenoid abduction evoked by electrical stimulation of the PCA muscle. Rheobase and chronaxie were determined for innervated PCA muscle. We then tested the hypothesis that direct muscle stimulation can maintain airway patency during strenuous exercise in horses with induced transient conduction block of the laryngeal motor nerve. Six adult horses were instrumented with a single bipolar intra-muscular electrode in the left PCA muscle. Rheobase and chronaxie were within the normal range for innervated muscle at 0.55±0.38 v and 0.38±0.19 ms respectively. Intramuscular stimulation of the PCA muscle significantly improved arytenoid abduction at all levels of exercise intensity and there was no significant difference between the level of abduction achieved with stimulation and control values under moderate loads. The equine larynx may provide a useful model for the study of bilateral fold paralysis
    corecore