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1 Introduction and preliminaries
The concept of probabilistic Banach spaces was introduced by Serstnev [] by adapting
the idea of Menger [] to linear spaces. Fixed point theory in such spaces was studied and
developed by many authors (see [–] and the references mentioned therein).

This paper deals with the existence and uniqueness of fixed points for a certain class of
convex and decreasing operators defined in a probabilistic Banach space partially ordered
by a cone.

For the sake of convenience, we first give some definitions and known results from the
existing literature. For more details, we refer to [, ].

Definition . A function f : R → R is said to be a distribution function if it satisfies the
following conditions:

(i) f is non-decreasing;
(ii) f is left-continuous;

(iii) inft∈R f (t) =  and supt∈R f (t) = .
We denote by D the set of all distribution functions.

Definition . A triangular norm, briefly a T-norm, is a mapping T : [, ]× [, ] → [, ]
that is continuous and such that for every a, b, c, d ∈ [, ],

(i) T(a, ) = a;
(ii) T(a, b) = T(b, a);
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(iii) c ≥ a, d ≥ b �⇒ T(c, d) ≥ T(a, b);
(iv) T(T(a, b), c) = T(a, T(b, c)).

As standard examples, Tm(a, b) = min{a, b} and Tp(a, b) = ab on [, ] are T-norms.

Definition . Let X be a real vector space, T be a T-norm and N : X → D be a given
mapping. We say that N is a probabilistic norm on X if the following conditions hold:

(i) Nx() =  for every x ∈ X ;
(ii) Nx(t) =  for all t >  iff x = ;

(iii) Nαx(t) = Nx( t
|α| ) for all x ∈ X and α ∈ R\{};

(iv) Nx+y(s + t) ≥ T(Nx(s), Ny(t)) for all x, y ∈ X and s, t ≥ .
In this case, the triplet (X, N , T) is said to be a probabilistic normed space.

In the above definition, for x ∈ X, the distribution function N(x) is denoted by Nx and
Nx(t) is the value Nx at t ∈R.

Example . Let (X,‖ · ‖) be a normed linear space. For all x ∈ X, define the mapping

Nx(t) =

{
 if t ≤ ,

t
t+‖x‖ if t > .

Then (X, N , Tp) and (X, N , Tm) are probabilistic normed spaces.

Example . Let (X,‖ · ‖) be a normed linear space. For all x ∈ X, define the mapping

Nx(t) =

{
 if t ≤ ,
e

–‖x‖
t if t > .

Then (X, N , Tp) is a probabilistic normed space.

Now, let us recall some topological properties of probabilistic normed spaces.

Definition . Let (X, N , T) be a probabilistic normed space. A sequence {xn} in X is said
to be convergent to a point x ∈ X if for any ε >  and λ > , there exists a positive integer
N such that

Nxn–x(ε) >  – λ

for every n ≥ N .

Definition . Let (X, N , T) be a probabilistic normed space. A sequence {xn} in X is said
to be Cauchy if for any ε >  and λ > , there exists a positive integer N such that

Nxn–xm (ε) >  – λ

for every n, m ≥ N .
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Definition . Let (X, N , T) be a probabilistic normed space. It is said to be a Banach
probabilistic normed space (or complete) if every Cauchy sequence in X is convergent to
a point in X.

Definition . Let (X, N , T) be a probabilistic normed space. A subset A of X is said to
be closed if every convergent sequence in A converges to an element of A.

Definition . Let (X, N , T) be a probabilistic Banach space. A nonempty subset P ⊆ X
is a cone if it satisfies the following conditions:

(i) P is closed and convex;
(ii) if p ∈ P, tp ∈ P for every t ≥ ;

(iii) if both p and –p are in P, then p = .

Let 
 be the partial order on X induced by the cone P in X. That is,

p, q ∈ X, p 
 q ⇐⇒ p – q ∈ P.

Thus X becomes a partially ordered probabilistic Banach space. If x, y ∈ X, the notation
x ≺ y means that x 
 y and x = y.

Definition . Let (X, N , T) be a probabilistic Banach space. A cone P in X is said to be
normal if there is some constant K >  (normal constant) such that

x, y ∈ X,  
 x 
 y �⇒ Nx(t) ≥ Ny

(
t
K

)
, t ∈R.

Definition . Let (X, N , T) be a probabilistic Banach space and P ⊆ X be a cone in X.
Let C be a convex subset in X. An operator A : C → X is called a convex operator if

A
(
tx + ( – t)y

) 
 tAx + ( – t)Ay

for all x, y ∈ C, x 
 y and t ∈ [, ].

Definition . Let (X, N , T) be a probabilistic Banach space and P ⊆ X be a cone in X.
An operator A : C → X is said to be a decreasing operator if

x, y ∈ C, x 
 y �⇒ Ax � Ay.

The paper is organized as follows. In Section , we study the existence and uniqueness
of positive fixed points for a certain class of decreasing and convex operators A : P → P.
In Section , we study the existence and uniqueness of positive solutions to the nonlinear
functional equation x = x + Bx, where x ∈ P and B : P → P is a given operator satisfying
certain conditions. Section  contains a Banach version of our man result established in
Section . Finally, in Section , we present an application of our main result to the study
of the existence and uniqueness of positive solutions to a nonlinear differential equation
of second order with two-point boundary value problem.
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2 Main result and proof
Before stating our main result, we need some lemmas.

Lemma . Let (X, N , T) be a probabilistic Banach space and {xn} be a sequence in X that
converges to some x ∈ X. Then any subsequence of {xn} converges to x.

Proof Let {xϕ(n)} be a subsequence of {xn}, where ϕ : N →N is a mapping satisfying

ϕ(n + ) > ϕ(n)

for every n ∈ N. Let ε >  and λ > . Since {xn} converges to x ∈ X, there is some positive
integer N such that

Nxn–x(ε) >  – λ

for every n ≥ N . On the other hand,

n ≥ N �⇒ ϕ(n) ≥ ϕ(N) ≥ N .

Then

Nxϕ(n)–x(ε) >  – λ

for every n ≥ N . This proves that {xϕ(n)} converges to x. �

Lemma . (see []) Let (X, N , T) be a probabilistic Banach space. Let {xn} and {yn} be
two sequences in X and {αn} be a real sequence. The following properties hold:

(i) if {xn} converges to x ∈ X and {yn} converges to y ∈ X , then {xn + yn} converges to x + y;
(ii) if {αn} converges to some α ∈ R and {xn} converges to some x ∈ X , then {αnxn}

converges to αx.

Lemma . Let (X, N , T) be a probabilistic Banach space and P ⊆ X be a normal cone in
X with normal constant K > . Let {un} be a sequence in X such that

 
 um – un 
 ξna

for every m, n ≥ N , where a ∈ X and {ξn} is a real sequence such that ξn →  as n → ∞.
Then {un} is a Cauchy sequence in the probabilistic Banach space (X, N , T).

Proof Let ε >  and λ > . Without restriction of the generality, we may assume that ξn = 
for every n ≥ N . Since P is a normal cone, we have

Num–un (ε) ≥ Nξna

(
ε

K

)
= Na

(
ε

K |ξn|
)

(.)

for every m, n ≥ N . On the other hand, since Na ∈ D, we have

sup
t∈R

Na(t) = .
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Then there is some t∗ ∈ R such that

Na
(
t∗) >  – λ.

Since ξn →  as n → ∞, there is some positive integer N ′ such that

ε

K |ξn| > t∗

for every n ≥ N ′. Since Na is non-decreasing, we get

Na

(
ε

K |ξn|
)

≥ Na
(
t∗) >  – λ (.)

for every n ≥ N ′. Finally, using (.) and (.), we obtain

Num–un (ε) >  – λ

for every n, m ≥ max{N , N ′}. This proves that {un} is a Cauchy sequence in the probabilis-
tic Banach space (X, N , T). �

Lemma . Let (X, N , T) be a probabilistic Banach space and P ⊆ X be a normal cone in
X with normal constant K > . Let us consider two sequences {un} and {vn} in X such that

 
 un 
 vn

for every n ≥ N . Then

{vn} converges to  �⇒ {un} converges to .

Proof Let ε >  and λ > . Since {vn} converges to , there exists some N ′ ∈ N such that

Nvn

(
ε

K

)
>  – λ

for any n ≥ N ′. On the other hand, since P is normal, we have

Nun (ε) ≥ Nvn

(
ε

K

)

for any n ≥ N . Thus we proved that

Nun (ε) >  – λ

for any n ≥ max{N , N ′}, which implies that {un} converges to . �

The following result is an immediate consequence of Lemma . and Lemma ..

Lemma . Let (X, N , T) be a probabilistic Banach space and P ⊆ X be a normal cone in
X with normal constant K > . Let us consider three sequences {un}, {vn} and {wn} in X
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such that

un 
 vn 
 wn

for every n ≥ N . Then

{un}, {wn} converge to � ∈ X �⇒ {vn} converges to �.

Now, we are ready to state and prove our main result.
Let (X, N , T) be a probabilistic Banach space and P ⊆ X be a normal cone in X with

normal constant K > . We denote by A the set of operators A : P → P satisfying the
following conditions:

(A)  ≺ A;
(A) A is a convex and decreasing operator;
(A) there exist γ ∈ (, ) and m, n ∈N with n > m such that

Am+ – Am  � γ
(
Am+ – Am 

)
(.)

and

An  � 

(
Am+ + Am 

)
. (.)

Theorem . Let A ∈A. Then
(i) A has a unique fixed point x∗ ∈ P;

(ii) for any initial value x ∈ P, the Picard sequence {xn} in X defined by

xn = Axn–, n ≥ 

converges to x∗;
(iii) we have the estimates

Nx(m+n)–x∗ (t)

≥ T
(

NA

(
(n –  – n + m)t

K

)
, NA

(
(n –  – n + m)t

K

))
(.)

for every n > n +  – m, t ∈R, and

Nx(m+n)+–x∗ (t)

≥ T
(

NA

(
(n –  – n + m)t

K

)
, NA

(
(n –  – n + m)t

K

))
(.)

for every n > n +  – m, t ∈R.

Proof Let us consider the sequence {un} in P defined by

un = An, n ∈N.
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By (.) and (.), we have

u(m+) � γ um+ + ( – γ )um (.)

and

un – um � um+. (.)

Since A is a decreasing operator, we have

 = u 
 u 
 · · · 
 um 
 · · · 
 u(m+n) 
 · · ·

 u(m+n)+ 
 · · · 
 um+ 
 · · · 
 u 
 u = A. (.)

Using (.) and (.), we obtain

 
 γ (u(m+n)+ – um ) 
 · · · 
 γ (um+ – um )


 u(m+) – um 
 · · · 
 u(m+n) – um .

For every n ∈N, we define the set

Sn =
{

s ∈ (, ] : u(m+n) � su(m+n)+ + ( – s)um

}
.

Clearly Sn = ∅ since γ ∈ Sn for every n ∈N. For every n ∈N, let

sn = sup
R

Sn and en =  – sn.

Let n ∈ N be fixed. By the definition of sn, there exists a sequence {ap} ⊂ Sn such that
ap → sn as p → ∞. Thus we have

u(m+n) � apu(m+n)+ + ( – ap)um

for every p ∈N. This means that

u(m+n) – apu(m+n)+ – ( – ap)um ∈ P

for every p ∈N. Since P is closed, letting p → ∞, using Lemma . and (.), we obtain

u(m+n) � snu(m+n)+ + enum ,

 < γ ≤ s ≤ s ≤ · · · ≤ sn ≤ · · · ≤ ,  ≤ en ≤  – γ . (.)

Now, we shall prove that en →  as n → ∞. Using inequalities (.), (.), (.) and the
fact that A is a decreasing convex operator, for every n ≥ n – m – , we have

u(m+n)+ = Au(m+n) 
 A(snu(m+n)+ + enum )


 snu(m+n+) + enum+
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 snu(m+n+) + en(un – um )


 ( + en)u(m+n+) – enum .

Thus we proved that

u(m+n+) � 
 + en

u(m+n)+ +
en

 + en
um

for every n ≥ n – m – . Using that A is convex and decreasing and inequality (.), we
obtain

u(m+n+)+ = Au(m+n+) 
 
 + en

u(m+n+) +
en

 + en
um+


 
 + en

u(m+n+) +
en

 + en
(un – um )


  + en

 + en
u(m+n+) –

en

 + en
um ,

which implies that

u(m+n+) �  + en

 + en
u(m+n+)+ +

en

 + en
um

for every n ≥ n – m – . This implies that

 + en

 + en
∈ Sn+

for every n ≥ n – m – . So, for every n ≥ n – m – , we have

 – en+ = sn+ ≥  + en

 + en
,

that is,

en+ ≤ en

 + en
.

Now, let us consider the function f : [, ] → [, ] defined by

f (r) =
r

 + r
, r ∈ [, ].

Since

en+ ≤ f (en)

for every n ≥ n – m –  and f is a non-decreasing function, we obtain

 ≤ en+ ≤ f n–n+m+(en–m–)

≤ en–m–

 + (n – n + m)en–m–
.
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Thus we have

 ≤ en+ ≤ 
(n – n + m)

(.)

for every n ≥ n – m + . Letting n → ∞ in (.), we get

lim
n→∞ en = ,

that is,

lim
n→∞ sn = .

Using (.), we deduce that for all n, p ∈N, we have

 
 u(m+n+p) – u(m+n) 
 u(m+n)+ – u(m+n)


 en(u(m+n)+ – um ) 
 en(u – um ) 
 enu. (.)

Since P is a normal cone and en →  as n → ∞, using Lemma ., we obtain that
{u(m+n)} is a Cauchy sequence. Since P is closed and (X, N , T) is a complete probabilistic
normed space, there is x∗ ∈ P such that {un} converges to x∗. Using (.), Lemma . and
Lemma ., we deduce that

{un} and {un+} converge to x∗. (.)

On the other hand, using (.), we have

u(m+n) 
 u(m+n+p)

for every n, p ∈N. This implies that

u(m+n+p) – u(m+n) ∈ P

for every n, p ∈N. Fix n ∈N and letting p → ∞, from (.) and since P is closed, we get

x∗ – u(m+n) ∈ P,

that is,

u(m+n) 
 x∗.

Similarly, we can observe that

x∗ 
 u(m+n)+.

Thus we proved that

u(m+n) 
 x∗ 
 u(m+n)+ (.)
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for all n ∈N. Using the fact that A is a decreasing operator, (.) yields

u(m+n+) 
 Ax∗ 
 u(m+n)+

for all n ∈N. Letting n → ∞ in the above inequality and using (.), we obtain

x∗ 
 Ax∗ 
 x∗,

that is, x∗ = Ax∗. Thus we proved that x∗ ∈ P is a fixed point of the operator A.
Now, let x ∈ P be an arbitrary point. Let us consider the Picard sequence {xn} in P

defined by

xn = Anx for every n ∈N. (.)

Since A is a decreasing operator, using that u 
 x and u 
 x, by induction we obtain

u(m+n) 
 x(m+n) 
 u(m+n)–, (.)

u(m+n) 
 x(m+n)+ 
 u(m+n)+ (.)

for every n ∈N. Letting n → ∞ in (.) and (.), using (.) and Lemma ., we obtain

{xn} and {xn+} converge to x∗,

which implies that {xn} converges to x∗.
Let us prove that x∗ is the unique fixed point of the operator A. Suppose that y∗ ∈ P is

another fixed point of A. Let x = y∗ and consider the Picard sequence {xn} in P defined
by (.). Then we have

xn = Anx = y∗ for every n ∈N.

Letting n → ∞ in (.) and (.), using (.), we obtain x∗ = y∗. Thus we proved that x∗

is the unique fixed point of A.
Let us prove estimate (.). Let t ∈R, we have

Nx(m+n)–x∗ (t) = N(x(m+n)–u(m+n))+(u(m+n)–x∗)(t)

≥ T
(

Nx(m+n)–u(m+n)

(
t


)
, Nu(m+n)–x∗

(
t


))
. (.)

By (.), we have

 
 x(m+n) – u(m+n) 
 u(m+n)– – u(m+n).

Since P is a normal cone, we get

Nx(m+n)–u(m+n)

(
t


)
≥ Nu(m+n)––u(m+n)

(
t

K

)
. (.)
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Using (.) and (.), we have

 
 x∗ – u(m+n) 
 u(m+n)– – u(m+n).

Since P is a normal cone, we get

Nx∗–u(m+n)

(
t


)
≥ Nu(m+n)––u(m+n)

(
t

K

)
. (.)

It follows from (.), (.) and (.) that

Nx(m+n)–x∗ (t) ≥ T
(

Nu(m+n)––u(m+n)

(
t

K

)
, Nu(m+n)––u(m+n)

(
t

K

))
. (.)

On the other hand, by (.) and (.), we have

u(m+n) � u(m+n–) � sn–u(m+n)– + en–um .

Using (.), (.) and the above inequality, we obtain

 
 u(m+n)– – u(m+n) 
 en–A.

Using (.) and the above inequality, we obtain

 
 u(m+n)– – u(m+n) 
 
(n –  – n + m)

A

for every n > n +  – m. Since P is a normal cone, we have

Nu(m+n)––u(m+n)

(
t

K

)
≥ NA

(
(n –  – n + m)t

K

)
(.)

for every n > n +  – m. Now, (.) follows immediately from (.) and (.). The proof
of estimate (.) follows using similar arguments as above. This ends the proof. �

3 Positive solutions for the nonlinear functional equation: x = x0 + Bx
In this section, from our main theorem (Theorem .), we deduce an existence and
uniqueness result for the nonlinear operator equation on ordered probabilistic Banach
spaces

x = x + Bx, (.)

where x ∈ P and B : P → P is a given operator satisfying certain conditions. There have
appeared a series of research results concerning this kind of nonlinear operator Eq. (.)
because of the crucial role played by nonlinear equations in applied science as well as in
mathematics (see [–]).

Let (X, N , T) be a probabilistic Banach space and P ⊆ X be a normal cone in X with nor-
mal constant K > . We denote by B the set of operators B : P → P satisfying the following
conditions:
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(B) B = ;
(B) B is a convex and decreasing operator.

We have the following result.

Theorem . Let B ∈ B and x ∈ P such that  ≺ x. Then the operator Eq. (.) has a
unique solution x∗ ∈ P.

Proof Let us define the operator A : P → P by

Ax = x + Bx, x ∈ P.

Obviously, x ∈ P is a solution to Eq. (.) if and only if x is a fixed point of A. We have just
to prove that the operator A satisfies the required conditions of Theorem ., that is, A
belongs to the class of operators A.

• Condition (A). Since x � , using (B), we have

A = x + B = x � .

Thus condition (A) is satisfied.
• Condition (A). Let x, y ∈ P such that x 
 y. Using the fact that B is a decreasing

operator, we obtain

Bx � By,

which implies that

x + Bx � x + By,

that is,

Ax � Ay.

Thus A is a decreasing operator.
Now, let t ∈ [, ], x, y ∈ P such that x 
 y. Since B is a convex operator, we have

B
(
tx + ( – t)y

) 
 tBx + ( – t)By,

which implies that

x + B
(
tx + ( – t)y

) 
 x + tBx + ( – t)By = t(x + Bx) + ( – t)(x + By).

Thus we have

A
(
tx + ( – t)y

) 
 tAx + ( – t)Ay.

Then A is a convex operator. Condition (A) is then satisfied.
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• Condition (A). Let n =  and m = . Since B = , we have

An  = A = A(x + B) = Ax = x + Bx.

On the other hand,



(
Am+ + Am 

)
=




A =



x.

Clearly, we have

An  � 

(
Am+ + Am 

)
.

Now, we have

Am+ – Am  = A = x + Bx.

Moreover, for any γ ∈ (, ), we have

γ
(
Am+ – Am 

)
= γ A = γ x + γ B(x + Bx).

Thus we have

(
Am+ – Am 

)
– γ

(
Am+ – Am 

)
= ( – γ )x + Bx – γ B(x + Bx).

Since γ ∈ (, ) and B is a decreasing operator, we have

( – γ )x � 

and

Bx – γ B(x + Bx) � Bx – B(x + Bx) � .

Then we get

Am+ – Am  � γ
(
Am+ – Am 

)
for every γ ∈ (, ).

Hence A ∈A and the result follows from Theorem .. �

4 The case of Banach spaces
Let (X,‖ · ‖) be a Banach space and P ⊂ X be a cone in X. Let us suppose that P is a normal
cone with normal constant K > , that is,

x, y ∈ X,  
 x 
 y �⇒ ‖x‖ ≤ K‖y‖.

Let A : P → P be an operator satisfying the following conditions:
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(i)  ≺ A;
(ii) A is a convex and decreasing operator;

(iii) there exist γ ∈ (, ) and m, n ∈N with n > m such that

Am+ – Am  � γ
(
Am+ – Am 

)

and

An  � 

(
Am+ + Am 

)
.

Let us consider the probabilistic Banach space (X, N , Tm), where

Nx(t) =

{
 if t ≤ ,

t
t+‖x‖ if t > 

for every x ∈ X.

Lemma . P is a normal cone in the probabilistic Banach space (X, N , Tm) with normal
constant K .

Proof At first, let us prove that P is also a cone in the probabilistic Banach space (X, N , Tm).
Indeed, we have just to prove that P is also closed in (X, N , Tm). Let {xn} be a sequence in
P such that {xn} converges to some x ∈ X in (X, N , Tm). Let ε > , by the definition of the
convergence in a probabilistic normed space, there exists some N ∈N such that

Nxn–x(ε) >



for every n ≥ N . Then we have

ε

ε + ‖xn – x‖ >



for every n ≥ N , which is equivalent to

‖xn – x‖ < ε

for every n ≥ N . Thus {xn} converges to x with respect to ‖ · ‖. Since P is closed with
respect to the topology of the norm ‖ · ‖, we have x ∈ P. Then we have proved that P is
also closed in the probabilistic Banach space (X, N , Tm).

Now, let us prove that P is normal in (X, N , Tm). Let x, y ∈ X such that

 
 x 
 y.

Since P is a normal cone in the Banach space (X,‖ · ‖) with normal constant K , we have

‖x‖ ≤ K‖y‖.
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Then, for every t > , we have

Nx(t) =
t

t + ‖x‖ ≥ t
t + K‖y‖ =

t
K

t
K + ‖y‖ = Ny

(
t
K

)
.

If t ≤ , obviously we have

 = Nx(t) = Ny

(
t
K

)
.

Thus, for every t ∈R, we have

Nx(t) ≥ Ny

(
t
K

)
.

This proves that P is a normal cone in (X, N , Tm) with normal constant K . �

Now, using Theorem . and Lemma ., we obtain the following fixed point result in
Banach spaces ([], Theorem .).

Corollary . Suppose that conditions (i)-(iii) are satisfied. Then
(I) A has a unique fixed point x∗ ∈ P;

(II) for any initial value x ∈ P, the Picard sequence {xn} in X defined by

xn = Axn–, n ≥ 

converges to x∗;
(III) we have the estimates

∥∥x(m+n) – x∗∥∥ ≤ K‖A‖
n –  – n + m

for every n > n +  – m, and

∥∥x(m+n)+ – x∗∥∥ ≤ K‖A‖
n –  – n + m

for every n > n +  – m.

5 An application to a two-point boundary value problem
In this section, we present an application of Theorem . to a two-point boundary value
problem.

Let a : [, ] →R be a given function satisfying the following conditions:

(a) a is a continuous function;
(a) a(x( – x)) = a(x) for every x ∈ [, ];
(a)  < m ≤ a(x) ≤ M for every x ∈ [, ].

Clearly, the set of functions a : [, ] →R satisfying the above conditions is not empty.
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Example . Let a : [, ] →R be a positive constant function. Then a satisfies conditions
(a)-(a).

Example . Let a : [, ] →R be the function defined by

a(x) = α + βx( – x), x ∈ [, ],

where α >  and β ≥  are constants. Then a satisfies conditions (a)-(a) with

m = α and M = α +
β


.

Let f : [,∞) →R be a function satisfying the following conditions:

(f) f is a continuous function, f ≥ ;
(f) f is a decreasing and convex function;
(f) f () = ,  < f ( M

 ) < ;
(f) f (γ x) ≥ 

 for every x ∈ [, M
 ], where

γ =  –



f
(

M


)(
 – f

(
m


))
.

The set of functions f : [,∞) →R satisfying the above conditions is not empty.

Example . Let m = M = , that is,

a(x) = , x ∈ [, ].

Let f : [,∞) →R be the function defined by

f (x) =


 + x
, x ≥ .

Then f satisfies conditions (f)-(f) with γ = ,
, .

Now, let us consider the following two-point boundary value problem:

{
–u′′(x) = f (a(x)u(x)) if  < x < ,
u() = u() = .

(.)

Let (X, N , Tm) be the probabilistic Banach space, where X = C([, ]) is the set of real
continuous functions in [, ] and N : X → D is given by

Nu(t) =

{
 if t ≤ ,

t
t+max≤x≤ |u(x)| if t > ,

u ∈ C
(
[, ]

)
.

Let

P =
{

u ∈ C
(
[, ]

)
: u(x) ≥  for all x ∈ [, ]

}
.
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Then P is a normal cone in the probabilistic Banach space (X, N , Tm). The partial order 

induced by the cone P in the set X is defined by

u, v ∈ C
(
[, ]

)
, u 
 v ⇐⇒ u(x) ≤ v(x) for all x ∈ [, ].

We have the following result.

Theorem . The boundary value problem (.) has a unique positive solution u∗ ∈ P.

Proof The Green function associated to (.) is given by

G(x, y) =

{
y( – x) if  ≤ y ≤ x ≤ ,
x( – y) if  ≤ x ≤ y ≤ .

Then problem (.) is equivalent to the integral equation

u(x) =
∫ 


G(x, y)f

(
a(y)u(y)

)
dy, x ∈ [, ].

Let us consider the nonlinear operator A : P → P defined by

(Au)(x) =
∫ 


G(x, y)f

(
a(y)u(y)

)
dy, x ∈ [, ].

We have to prove that A has a unique fixed point in P. Theorem . will be used for the
proof.

Clearly, the operator A is convex and decreasing with respect to the partial order 
.
For every x ∈ [, ], we have

(A)(x) =
∫ 


G(x, y)f () dy =

∫ 


G(x, y) dy =

x( – x)


≥ .

Then we have

 ≺ A.

Moreover, we have

 ≤ a(x)(A)(x) ≤ M


, x ∈ [, ],

which implies that

f
(
a(x)(A)(x)

) ≥ f
(

M


)
, x ∈ [, ].

The above inequality yields

(
A

)
(x) =

∫ 


G(x, y)f

(
a(y)(A)(y)

)
dy ≥ f

(
M


)
(A)(x), x ∈ [, ]. (.)
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On the other hand, for every x ∈ [, ], we have

(
A

)
(x) =

∫ 


G(x, y)f

(
a(y)(A)(y)

)
dy

= ( – x)
∫ x


yf

(
a(y)

y( – y)


)
dy + x

∫ 

x
( – y)f

(
a(y)

y( – y)


)
dy.

Using the fact that f is a decreasing and convex function, we obtain

( – x)
∫ x


yf

(
a(y)

y( – y)


)
dy

≤ ( – x)
∫ x


y( – y)f

(
a(y)y



)
dy + ( – x)

∫ x


y dy

≤ ( – x)
∫ x


y( – y)f

(
a(y)



)
dy + ( – x)

∫ x


y( – y) dy + ( – x)

∫ x


y dy

≤ ( – x)f
(

m


)∫ x


y( – y) dy + ( – x)

∫ x


y( – y) dy + ( – x)

∫ x


y dy

=



[
f
(

m


)(
x – x) + x – x + x

]
(A)(x).

Similarly, using condition (a), we have

x
∫ 

x
( – y)f

(
a(y)

y( – y)


)
dy

≤ 


[
f
(

m


)(
 + x – x + x) +  – x + x – x

]
(A)(x).

Thus we have

(
A

)
(x) ≤ 



[
 + f

(
m


)]
(A)(x) (.)

for every x ∈ [, ]. Moreover, using (.), we get

f
(
a(x)

(
A

)
(x)

) ≤ f
(

a(x)f
(

M


)
(A)(x)

)
(.)

for every x ∈ [, ]. Now, (.) and (.) yield

(
A

)
(x) =

∫ 


G(x, y)f

(
a(y)

(
A

)
(y)

)
dy

≤
∫ 


G(x, y)f

(
a(y)f

(
M


)
(A)(y)

)
dy

≤ f
(

M


)∫ 


G(x, y)f

(
a(y)(A)(y)

)
dy +

[
 – f

(
M


)]
(A)(x)

= f
(

M


)(
A

)
(x) +

[
 – f

(
M


)]
(A)(x)

≤ γ (A)(x)
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for every x ∈ [, ]. Thus we have

f
(
a(x)

(
A

)
(x)

) ≥ f
(
γ a(x)(A)(x)

)
, x ∈ [, ].

Using condition (f), we obtain

(
A

)
(x) =

∫ 


G(x, y)f

(
a(y)

(
A

)
(y)

)
dy

≥
∫ 


G(x, y)f

(
γ a(y)(A)(y)

)
dy

≥ 


(A)(x)

for every x ∈ [, ]. Finally, using (.), for all x ∈ [, ], we have

(
A

)
(x) ≥ ε(A)(x) ≥ ε

(
A

)
(x),

where ε = f ( M
 ) ∈ (, ).

Now, the desired result follows from Theorem . with m =  and n = . �
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