185 research outputs found

    Deuteron Electroweak Disintegration

    Get PDF
    We study the deuteron electrodisintegration with inclusion of the neutral currents focusing on the helicity asymmetry of the exclusive cross section in coplanar geometry. We stress that a measurement of this asymmetry in the quasi elastic region is of interest for an experimental determination of the weak form factors of the nucleon, allowing one to obtain the parity violating electron neutron asymmetry. Numerically, we consider the reaction at low momentum transfer and discuss the sensitivity of the helicity asymmetry to the strangeness radius and magnetic moment. The problems coming from the finite angular acceptance of the spectrometers are also considered.Comment: 30 pages, Latex, 7 eps figures, submitted to Phys.Rev.C e-mail: [email protected] , [email protected]

    Is there a no-go theorem for superradiant quantum phase transitions in cavity and circuit QED ?

    Get PDF
    In cavity quantum electrodynamics (QED), the interaction between an atomic transition and the cavity field is measured by the vacuum Rabi frequency Ω0\Omega_0. The analogous term "circuit QED" has been introduced for Josephson junctions, because superconducting circuits behave as artificial atoms coupled to the bosonic field of a resonator. In the regime with Ω0\Omega_0 comparable to the two-level transition frequency, "superradiant" quantum phase transitions for the cavity vacuum have been predicted, e.g. within the Dicke model. Here, we prove that if the time-independent light-matter Hamiltonian is considered, a superradiant quantum critical point is forbidden for electric dipole atomic transitions due to the oscillator strength sum rule. In circuit QED, the capacitive coupling is analogous to the electric dipole one: yet, such no-go property can be circumvented by Cooper pair boxes capacitively coupled to a resonator, due to their peculiar Hilbert space topology and a violation of the corresponding sum rule

    Deuteron NN*(1440) components from a chiral quark model

    Get PDF
    We present a nonrelativistic coupled-channel calculation of the deuteron structure including Delta Delta and NN^*(1440) channels, besides the standard NN S and D-wave components. All the necessary building blocks to perform the calculation have been obtained from the same underlying quark model. The calculated NN^*(1440) probabilities find support in the explanation given to different deuteron reactions.Comment: 4 pages; revtex4, Accepted for publication in Phys. Rev. C (Brief Report

    Nuclear muon capture by 3He: meson exchange currents for the triton channel

    Get PDF
    Exchange current corrections are calculated using currents found from the hard-pion model and AV14+3BF wavefunctions. Results are given for the rate and spin observables. Their sensitivity to g_P, the nucleon pseudoscalar form factor, is reported.Comment: 35 pages, uuencoded gz-compressed tar file 42 Kbyte

    Charge Symmetry Breaking in 500 MeV Nucleon-Trinucleon Scattering

    Get PDF
    Elastic nucleon scattering from the 3He and 3H mirror nuclei is examined as a test of charge symmetry violation. The differential cross-sections are calculated at 500 MeV using a microsopic, momentum-space optical potential including the full coupling of two spin 1/2 particles and an exact treatment of the Coulomb force. The charge-symmetry-breaking effects investigated arise from a violation within the nuclear structure, from the p-nucleus Coulomb force, and from the mass-differences of the charge symmetric states. Measurements likely to reveal reliable information are noted.Comment: 5 page

    Radiative capture of protons by deuterons

    Get PDF
    The differential cross section for radiative capture of protons by deuterons is calculated using different realistic NN interactions. We compare our results with the available experimental data below Ex=20MeVE_x = 20 MeV. Excellent agreement is found when taking into account meson exchange currents, dipole and quadrupole contributions, and the full initial state interaction. There is only a small difference between the magnitudes of the cross sections for the different potentials considered. The angular distributions, however, are practically potential independent.Comment: 4 pages (twocolumn), 4 postscript figures included, submitted for publication, revised versio

    Threshold Electrodisintegration of ^3He

    Get PDF
    Cross sections were measured for the near-threshold electrodisintegration of ^3He at momentum transfer values of q=2.4, 4.4, and 4.7 fm^{-1}. From these and prior measurements the transverse and longitudinal response functions R_T and R_L were deduced. Comparisons are made against previously published and new non-relativistic A=3 calculations using the best available NN potentials. In general, for q<2 fm^{-1} these calculations accurately predict the threshold electrodisintegration of ^3He. Agreement at increasing q demands consideration of two-body terms, but discrepancies still appear at the highest momentum transfers probed, perhaps due to the neglect of relativistic dynamics, or to the underestimation of high-momentum wave-function components.Comment: 9 pages, 7 figures, 1 table, REVTEX4, submitted to Physical Review

    Targeting gp100 and TRP-2 with a DNA vaccine: incorporating T cell epitopes with a human IgG1 antibody induces potent T cell responses that are associated with favourable clinical outcome in a phase I/II trial

    Get PDF
    A DNA vaccine, SCIB1, incorporating two CD8 and two CD4 epitopes from TRP-2/gp100 was evaluated in patients with metastatic melanoma. Each patient received SCIB1 via intramuscular injection with electroporation. The trial was designed to find the safest dose of SCIB1 which induced immune/clinical responses in patients with or without tumour. Fifteen patients with tumor received SCIB1 doses of 0.4-8 mg whilst 20 fully-resected patients received 2-8 mg doses. Twelve patients elected to continue immunization every 3 months for up to 39 months. SCIB1 induced dose-dependent T cell responses in 88% of patients with no serious adverse effects or dose limiting toxicities. The intensity of the T cell responses was significantly higher in patients receiving 4 mg doses without tumor when compared to those with tumor (p< 0.01). In contrast, patients with tumor showed a significantly higher response to the 8 mg dose than the 4 mg dose (p< 0.03) but there was no significant difference in the patients without tumor. One of 15 patients with measurable disease showed an objective tumor response and 7/15 showed stable disease. 5/20 fully-resected patients have experienced disease recurrence but all remained alive at the cut-off date with a median observation time of 37 months. A positive clinical outcome was associated with MHC-I and MHC-II expression on tumors prior to therapy (p=0.027). We conclude that SCIB1 is well tolerated and stimulates potent T cell responses in melanoma patients. It deserves further evaluation as a single agent adjuvant therapy or in combination with checkpoint inhibitors in advanced disease

    Moscow-type NN-potentials and three-nucleon bound states

    Get PDF
    A detailed description of Moscow-type (M-type) potential models for the NN interaction is given. The microscopic foundation of these models, which appear as a consequence of the composite quark structure of nucleons, is discussed. M-type models are shown to arise naturally in a coupled channel approach when compound or bag-like six-quark states, strongly coupled to the NN channel, are eliminated from the complete multiquark wave function. The role of the deep-lying bound states that appear in these models is elucidated. By introducing additional conditions of orthogonality to these compound six-quark states, a continuous series of almost on-shell equivalent nonlocal interaction models, characterized by a strong reduction or full absence of a local repulsive core (M-type models), is generated. The predictions of these interaction models for 3N systems are analyzed in detail. It is shown that M-type models give, under certain conditions, a stronger binding of the 3N system than the original phase-equivalent model with nodeless wave functions. An analysis of the 3N system with the new versions of the Moscow NN potential describing also the higher even partial waves is presented. Large deviations from conventional NN force models are found for the momentum distribution in the high momentum region. In particular, the Coulomb displacement energy for nuclei ^3He - ^3H displays a promising agreement with experiment when the ^3H binding energy is extrapolated to the experimental value.Comment: 23 pages Latex, 9 figures, to appear in Phys.Rev.

    Quark-model study of few-baryon systems

    Get PDF
    We review the application of non-relativistic constituent quark models to study one, two and three non-strange baryon systems. We present results for the baryon spectra, potentials and observables of the NN, NΔ\Delta, ΔΔ\Delta\Delta and NN(1440)^*(1440) systems, and also for the binding energies of three non-strange baryon systems. We make emphasis on observable effects related to quark antisymmetry and its interplay with quark dynamics.Comment: 82 pages, 36 figures, 18 tables. Accepted for publication in Reports on Progress in Physic
    corecore