185 research outputs found
Deuteron Electroweak Disintegration
We study the deuteron electrodisintegration with inclusion of the neutral
currents focusing on the helicity asymmetry of the exclusive cross section in
coplanar geometry. We stress that a measurement of this asymmetry in the quasi
elastic region is of interest for an experimental determination of the weak
form factors of the nucleon, allowing one to obtain the parity violating
electron neutron asymmetry. Numerically, we consider the reaction at low
momentum transfer and discuss the sensitivity of the helicity asymmetry to the
strangeness radius and magnetic moment. The problems coming from the finite
angular acceptance of the spectrometers are also considered.Comment: 30 pages, Latex, 7 eps figures, submitted to Phys.Rev.C e-mail:
[email protected] , [email protected]
Is there a no-go theorem for superradiant quantum phase transitions in cavity and circuit QED ?
In cavity quantum electrodynamics (QED), the interaction between an atomic
transition and the cavity field is measured by the vacuum Rabi frequency
. The analogous term "circuit QED" has been introduced for Josephson
junctions, because superconducting circuits behave as artificial atoms coupled
to the bosonic field of a resonator. In the regime with comparable
to the two-level transition frequency, "superradiant" quantum phase transitions
for the cavity vacuum have been predicted, e.g. within the Dicke model. Here,
we prove that if the time-independent light-matter Hamiltonian is considered, a
superradiant quantum critical point is forbidden for electric dipole atomic
transitions due to the oscillator strength sum rule. In circuit QED, the
capacitive coupling is analogous to the electric dipole one: yet, such no-go
property can be circumvented by Cooper pair boxes capacitively coupled to a
resonator, due to their peculiar Hilbert space topology and a violation of the
corresponding sum rule
Deuteron NN*(1440) components from a chiral quark model
We present a nonrelativistic coupled-channel calculation of the deuteron
structure including Delta Delta and NN^*(1440) channels, besides the standard
NN S and D-wave components. All the necessary building blocks to perform the
calculation have been obtained from the same underlying quark model. The
calculated NN^*(1440) probabilities find support in the explanation given to
different deuteron reactions.Comment: 4 pages; revtex4, Accepted for publication in Phys. Rev. C (Brief
Report
Nuclear muon capture by 3He: meson exchange currents for the triton channel
Exchange current corrections are calculated using currents found from the
hard-pion model and AV14+3BF wavefunctions. Results are given for the rate and
spin observables. Their sensitivity to g_P, the nucleon pseudoscalar form
factor, is reported.Comment: 35 pages, uuencoded gz-compressed tar file 42 Kbyte
Charge Symmetry Breaking in 500 MeV Nucleon-Trinucleon Scattering
Elastic nucleon scattering from the 3He and 3H mirror nuclei is examined as a
test of charge symmetry violation. The differential cross-sections are
calculated at 500 MeV using a microsopic, momentum-space optical potential
including the full coupling of two spin 1/2 particles and an exact treatment of
the Coulomb force. The charge-symmetry-breaking effects investigated arise from
a violation within the nuclear structure, from the p-nucleus Coulomb force, and
from the mass-differences of the charge symmetric states. Measurements likely
to reveal reliable information are noted.Comment: 5 page
Radiative capture of protons by deuterons
The differential cross section for radiative capture of protons by deuterons
is calculated using different realistic NN interactions. We compare our results
with the available experimental data below . Excellent agreement
is found when taking into account meson exchange currents, dipole and
quadrupole contributions, and the full initial state interaction. There is only
a small difference between the magnitudes of the cross sections for the
different potentials considered. The angular distributions, however, are
practically potential independent.Comment: 4 pages (twocolumn), 4 postscript figures included, submitted for
publication, revised versio
Threshold Electrodisintegration of ^3He
Cross sections were measured for the near-threshold electrodisintegration of
^3He at momentum transfer values of q=2.4, 4.4, and 4.7 fm^{-1}. From these and
prior measurements the transverse and longitudinal response functions R_T and
R_L were deduced. Comparisons are made against previously published and new
non-relativistic A=3 calculations using the best available NN potentials. In
general, for q<2 fm^{-1} these calculations accurately predict the threshold
electrodisintegration of ^3He. Agreement at increasing q demands consideration
of two-body terms, but discrepancies still appear at the highest momentum
transfers probed, perhaps due to the neglect of relativistic dynamics, or to
the underestimation of high-momentum wave-function components.Comment: 9 pages, 7 figures, 1 table, REVTEX4, submitted to Physical Review
Targeting gp100 and TRP-2 with a DNA vaccine: incorporating T cell epitopes with a human IgG1 antibody induces potent T cell responses that are associated with favourable clinical outcome in a phase I/II trial
A DNA vaccine, SCIB1, incorporating two CD8 and two CD4 epitopes from TRP-2/gp100 was evaluated in patients with metastatic melanoma. Each patient received SCIB1 via intramuscular injection with electroporation. The trial was designed to find the safest dose of SCIB1 which induced immune/clinical responses in patients with or without tumour. Fifteen patients with tumor received SCIB1 doses of 0.4-8 mg whilst 20 fully-resected patients received 2-8 mg doses. Twelve patients elected to continue immunization every 3 months for up to 39 months. SCIB1 induced dose-dependent T cell responses in 88% of patients with no serious adverse effects or dose limiting toxicities. The intensity of the T cell responses was significantly higher in patients receiving 4 mg doses without tumor when compared to those with tumor (p< 0.01). In contrast, patients with tumor showed a significantly higher response to the 8 mg dose than the 4 mg dose (p< 0.03) but there was no significant difference in the patients without tumor. One of 15 patients with measurable disease showed an objective tumor response and 7/15 showed stable disease. 5/20 fully-resected patients have experienced disease recurrence but all remained alive at the cut-off date with a median observation time of 37 months. A positive clinical outcome was associated with MHC-I and MHC-II expression on tumors prior to therapy (p=0.027). We conclude that SCIB1 is well tolerated and stimulates potent T cell responses in melanoma patients. It deserves further evaluation as a single agent adjuvant therapy or in combination with checkpoint inhibitors in advanced disease
Moscow-type NN-potentials and three-nucleon bound states
A detailed description of Moscow-type (M-type) potential models for the NN
interaction is given. The microscopic foundation of these models, which appear
as a consequence of the composite quark structure of nucleons, is discussed.
M-type models are shown to arise naturally in a coupled channel approach when
compound or bag-like six-quark states, strongly coupled to the NN channel, are
eliminated from the complete multiquark wave function. The role of the
deep-lying bound states that appear in these models is elucidated. By
introducing additional conditions of orthogonality to these compound six-quark
states, a continuous series of almost on-shell equivalent nonlocal interaction
models, characterized by a strong reduction or full absence of a local
repulsive core (M-type models), is generated. The predictions of these
interaction models for 3N systems are analyzed in detail. It is shown that
M-type models give, under certain conditions, a stronger binding of the 3N
system than the original phase-equivalent model with nodeless wave functions.
An analysis of the 3N system with the new versions of the Moscow NN potential
describing also the higher even partial waves is presented. Large deviations
from conventional NN force models are found for the momentum distribution in
the high momentum region. In particular, the Coulomb displacement energy for
nuclei ^3He - ^3H displays a promising agreement with experiment when the ^3H
binding energy is extrapolated to the experimental value.Comment: 23 pages Latex, 9 figures, to appear in Phys.Rev.
Quark-model study of few-baryon systems
We review the application of non-relativistic constituent quark models to
study one, two and three non-strange baryon systems. We present results for the
baryon spectra, potentials and observables of the NN, N,
and NN systems, and also for the binding energies of three
non-strange baryon systems. We make emphasis on observable effects related to
quark antisymmetry and its interplay with quark dynamics.Comment: 82 pages, 36 figures, 18 tables. Accepted for publication in Reports
on Progress in Physic
- …
