93 research outputs found

    Analysis of a dynamic contact problem for electro-viscoelastic materials with Tresca’s friction

    Get PDF
    We consider a mathematical model which describes the dynamic process of contact between two electro-viscoelastic bodies with damage. The contact is bilateral and is modeled with Tresca’s friction law. The damage of the materials caused by elastic deformations. We derive a variational formulation for the model which is in the form of a system involving the displacement field, the electric potential and the damage. Then we provide the existence of a unique weak solution to the model. We also study the finite element approximations of the problem and derive error estimates. Finally, we present numerical simulation results in the study of a two-dimensional example

    Development of a cultivation process for the enhancement of human interferon alpha 2b production in the oleaginous yeast, Yarrowia lipolytica

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As an oleaginous yeast, <it>Yarrowia lipolytica </it>is able to assimilate hydrophobic substrates. This led to the isolation of several promoters of key enzymes of this catabolic pathway. Less is known about the behavior of <it>Y. lipolytica </it>in large bioreactors using these substrates. There is therefore a lack of established know-how concerning high cell density culture protocols of this yeast. Consequently, the establishment of suitable induction conditions is required, to maximize recombinant protein production under the control of these promoters.</p> <p>Results</p> <p>Human interferon α2b (huIFN α2b) production in <it>Yarrowia lipolytica </it>was used as a model for the enhancement of recombinant protein production under the control of the oleic acid (OA)-inducible promoter POX2. Cell viability and heterologous protein production were enhanced by exponential glucose feeding, to generate biomass before OA induction. The optimal biomass level before induction was determined (73 g L<sup>-1</sup>), and glucose was added with oleic acid during the induction phase. Several oleic acid feeding strategies were assessed. Continuous feeding with OA at a ratio of 0.02 g OA per g dry cell weight increased huIFNα2b production by a factor of 1.88 (425 mg L<sup>-1</sup>) and decreased the induction time (by a factor of 2.6, 21 h). huIFN α2b degradation by an aspartic protease secreted by <it>Y. lipolytica </it>was prevented by adding pepstatin (10 μM), leading to produce a 19-fold more active huIFN α2b (26.2 × 10<sup>7 </sup>IU mg<sup>-1</sup>).</p> <p>Conclusion</p> <p><it>Y. lipolytica</it>, a generally regarded as safe (GRAS) microorganism is one of the most promising non conventional yeasts for the production of biologically active therapeutic proteins under the control of hydrophobic substrate-inducible promoter.</p

    Chemical and Biological Properties of Sodium Alginates Isolated from Tow Brown Algae Dictyopteris Membranaceae and Padina Pavonica

    Get PDF
    Polysaccharides are known to have interesting biological activities. To date polysaccharides extracted from Tunisian seaweed have not been fully studied. In this paper we tried to isolate sodium alginate from two brown algae and evaluate their biological activities. Two brown seaweeds Dictyopteris membranaceae and Padina pavonica were treated with selective solvents to extract sodium alginate. Analyses were performed to determine their IR spectra, uronic acid’s content and biological properties (antioxidant and gastroprotective activities). Results showed that sodium alginate extracted from D. membranaceae contained 65% of uronic acid while this extracted from P. pavonica contained only 9% of uronic acid. These polysaccharides showed also variation in the structure and the activities. Sodium alginate extracted from D. membranaceae had the highest antioxidant activity with ED50 of 20µg/ml in the DPPH test. Additionally, this polysaccharide had the most important gastroprotective activity with a percent of 97% at dose 50mg/kg. Our finding suggested that sodium alginates extracted from D. membranaceae and P. pavonica could be used as a natural source of antioxidant and gastroprotective agents. &nbsp

    Can macroalgae provide promising anti-tumoral compounds? A closer look at Cystoseira tamariscifolia as a source for antioxidant and anti-hepatocarcinoma compounds

    Get PDF
    Marine organisms are a prolific source of drug leads in a variety of therapeutic areas. In the last few years, biomedical, pharmaceutical and nutraceutical industries have shown growing interest in novel compounds from marine organisms, including macroalgae. Cystoseira is a genus of Phaeophyceae (Fucales) macroalgae known to contain bioactive compounds. Organic extracts (hexane, diethyl ether, ethyl acetate and methanol extracts) from three Cystoseira species (C. humilis, C. tamariscifolia and C. usneoides) were evaluated for their total phenolic content, radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'- azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radicals, and antiproliferative activity against a human hepatocarcinoma cell line (HepG2 cells). C. tamariscifolia had the highest TPC and RSA. The hexane extract of C. tamariscifolia (CTH) had the highest cytotoxic activity (IC50 = 2.31 mu g/mL), and was further tested in four human tumor (cervical adenocarcinoma HeLa; gastric adenocarcinoma AGS; colorectal adenocarcinoma HCT-15; neuroblastoma SH-SY5Y), and two non-tumor (murine bone marrow stroma S17 and human umbilical vein endothelial HUVEC) cell lines in order to determine its selectivity. CTH strongly reduced viability of all tumor cell lines, especially of HepG2 cells. Cytotoxicity was particularly selective for the latter cells with a selectivity index = 12.6 as compared to non-tumor cells. Incubation with CTH led to a 2-fold decrease of HepG2 cell proliferation as shown by the bromodeoxyuridine (BrdU) incorporation assay. CTH-treated HepG2 cells presented also pro-apoptotic features, such as increased Annexin Wpropidium iodide (PI) binding and dose-dependent morphological alterations in DAPI-stained cells. Moreover, it had a noticeable disaggregating effect on 3D multicellular tumor spheroids. Deme boxy cystoketal chromane, a derivative of the meroditerpenoid cystoketal, was identified as the active compound in CTH and was shown to display selective in vitro cYtotoxicitY towards HepG2 cells

    Novel sequence variations in LAMA2 andSGCG genes modulating cis-acting regulatory elements and RNA secondary structure

    Get PDF
    In this study, we detected new sequence variations in LAMA2 and SGCG genes in 5 ethnic populations, and analysed their effect on enhancer composition and mRNA structure. PCR amplification and DNA sequencing were performed and followed by bioinformatics analyses using ESEfinder as well as MFOLD software. We found 3 novel sequence variations in the LAMA2 (c.3174+22_23insAT and c.6085 +12delA) and SGCG (c. * 102A/C) genes. These variations were present in 210 tested healthy controls from Tunisian, Moroccan, Algerian, Lebanese and French populations suggesting that they represent novel polymorphisms within LAMA2 and SGCG genes sequences. ESEfinder showed that the c. * 102A/C substitution created a new exon splicing enhancer in the 3'UTR of SGCG genes, whereas the c.6085 +12delA deletion was situated in the base pairing region between LAMA2 mRNA and the U1snRNA spliceosomal components. The RNA structure analyses showed that both variations modulated RNA secondary structure. Our results are suggestive of correlations between mRNA folding and the recruitment of spliceosomal components mediating splicing, including SR proteins. The contribution of common sequence variations to mRNA structural and functional diversity will contribute to a better study of gene expression

    Effects of home confinement on mental health and lifestyle behaviours during the COVID-19 outbreak:insights from the ECLB-COVID19 multicentre study

    Get PDF
    Although recognised as effective measures to curb the spread of the COVID-19 outbreak, social distancing and self-isolation have been suggested to generate a burden throughout the population. To provide scientific data to help identify risk factors for the psychosocial strain during the COVID-19 outbreak, an international cross-disciplinary online survey was circulated in April 2020. This report outlines the mental, emotional and behavioural consequences of COVID-19 home confinement. The ECLB-COVID19 electronic survey was designed by a steering group of multidisciplinary scientists, following a structured review of the literature. The survey was uploaded and shared on the Google online survey platform and was promoted by thirty-five research organizations from Europe, North Africa, Western Asia and the Americas. Questions were presented in a differential format with questions related to responses “before” and “during” the confinement period. 1047 replies (54% women) from Western Asia (36%), North Africa (40%), Europe (21%) and other continents (3%) were analysed. The COVID-19 home confinement evoked a negative effect on mental wellbeing and emotional status (P < 0.001; 0.43 ≤ d ≤ 0.65) with a greater proportion of individuals experiencing psychosocial and emotional disorders (+10% to +16.5%). These psychosocial tolls were associated with unhealthy lifestyle behaviours with a greater proportion of individuals experiencing (i) physical (+15.2%) and social (+71.2%) inactivity, (ii) poor sleep quality (+12.8%), (iii) unhealthy diet behaviours (+10%), and (iv) unemployment (6%). Conversely, participants demonstrated a greater use (+15%) of technology during the confinement period. These findings elucidate the risk of psychosocial strain during the COVID-19 home confinement period and provide a clear remit for the urgent implementation of technology-based intervention to foster an Active and Healthy Confinement Lifestyle AHCL)

    Globally altered sleep patterns and physical activity levels by confinement in 5056 individuals:ECLB COVID-19 international online survey

    Get PDF
    Symptoms of psychological distress and disorder have been widely reported in people under quarantine during the COVID-19 pandemic; in addition to severe disruption of peoples' daily activity and sleep patterns. This study investigates the association between physical-activity levels and sleep patterns in quarantined individuals. An international Google online survey was launched in April 6th, 2020 for 12-weeks. Forty-one research organizations from Europe, North-Africa, Western-Asia, and the Americas promoted the survey through their networks to the general society, which was made available in 14 languages. The survey was presented in a differential format with questions related to responses "before" and "during" the confinement period. Participants responded to the Pittsburgh Sleep Quality Index (PSQI) questionnaire and the short form of the International Physical Activity Questionnaire. 5056 replies (59.4% female), from Europe (46.4%), Western-Asia (25.4%), America (14.8%) and North-Africa (13.3%) were analysed. The COVID-19 home confinement led to impaired sleep quality, as evidenced by the increase in the global PSQI score (4.37 +/- 2.71 before home confinement vs. 5.32 +/- 3.23 during home confinement) (p &lt; 0.001). The frequency of individuals experiencing a good sleep decreased from 61% (n = 3063) before home confinement to 48% (n = 2405) during home confinement with highly active individuals experienced better sleep quality (p &lt; 0.001) in both conditions. Time spent engaged in all physical-activity and the metabolic equivalent of task in each physical-activity category (i.e., vigorous, moderate, walking) decreased significantly during COVID-19 home confinement (p &lt; 0.001). The number of hours of daily-sitting increased by similar to 2 hours/days during home confinement (p &lt; 0.001). COVID-19 home confinement resulted in significantly negative alterations in sleep patterns and physical-activity levels. To maintain health during home confinement, physical-activity promotion and sleep hygiene education and support are strongly warranted.</p

    Sleep Quality and Physical Activity as Predictors of Mental Wellbeing Variance in Older Adults during COVID-19 Lockdown:ECLB COVID-19 International Online Survey

    Get PDF
    Background. The COVID-19 lockdown could engender disruption to lifestyle behaviors, thus impairing mental wellbeing in the general population. This study investigated whether sociodemographic variables, changes in physical activity, and sleep quality from pre- to during lockdown were predictors of change in mental wellbeing in quarantined older adults. Methods. A 12-week international online survey was launched in 14 languages on 6 April 2020. Forty-one research institutions from Europe, Western-Asia, North-Africa, and the Americas, promoted the survey. The survey was presented in a differential format with questions related to responses "pre" and "during" the lockdown period. Participants responded to the Short Warwick-Edinburgh Mental Wellbeing Scale, the Pittsburgh Sleep Quality Index (PSQI) questionnaire, and the short form of the International Physical Activity Questionnaire. Results. Replies from older adults (aged &gt;55 years, n = 517), mainly from Europe (50.1%), Western-Asia (6.8%), America (30%), and North-Africa (9.3%) were analyzed. The COVID-19 lockdown led to significantly decreased mental wellbeing, sleep quality, and total physical activity energy expenditure levels (all p &lt; 0.001). Regression analysis showed that the change in total PSQI score and total physical activity energy expenditure (F-(2,F- 514) = 66.41 p &lt; 0.001) were significant predictors of the decrease in mental wellbeing from pre- to during lockdown (p &lt; 0.001, R-2: 0.20). Conclusion. COVID-19 lockdown deleteriously affected physical activity and sleep patterns. Furthermore, change in the total PSQI score and total physical activity energy expenditure were significant predictors for the decrease in mental wellbeing.</p
    corecore