252 research outputs found

    Reconciling Geophysical and Petrological Estimates of the Thermal Structure of Southern Tibet

    Get PDF
    The thermal structure of the Tibetan plateau—the largest orogenic system on Earth—remains largely unknown. Numerous avenues provide fragmentary pressure/temperature information, both at the present (predominantly informed though geophysical observation) and on the evolution of the thermal structure over the recent past (combining petrological, geochemical, and geophysical observables). However, these individual constraints have proven hard to reconcile with each other. Here, we show that models for the simple underthrusting of India beneath southern Tibet are capable of matching all available constraints on its thermal structure, both at the present day and since the Miocene. Many parameters in such models remain poorly constrained, and we explore the various trade-offs among the competing influences these parameters may have. However, three consistent features to such models emerge: (i) that present-day geophysical observations require the presence of relatively cold underthrust Indian lithosphere beneath southern Tibet; (ii) that geochemical constraints require the removal of Indian mantle from beneath southern Tibet at some point during the early Miocene, although the mechanism of this removal, and whether it includes the removal of any crustal material, is not constrained by our models; and (iii) that the combination of the southern extent of Miocene mantle-derived magmatism and the present-day geophysical structure and earthquake distribution of southern Tibet require that the time-averaged rate of underthrusting of India relative to central Tibet since the middle Miocene has been faster than it is at present

    Extreme enriched and heterogeneous ⁸⁷Sr/⁸⁶Sr ratios recorded in magmatic plagioclase from the Samoan hotspot

    Get PDF
    We report the major-element, trace-element, and 87Sr/86Sr compositions of six plagioclase crystals from two Samoan lavas with extreme EM2 isotopic compositions (ALIA-115-18 with whole-rock 87Sr/86Sr of 0.718592, and ALIA-115-21 with whole-rock 87Sr/86Sr of 0.720469). We employed laser-ablation split-stream mass spectrometry (LASS) to simultaneously measure 87Sr/86Sr ratios, major-element concentrations, and trace-element concentrations in the same plagioclase crystal volume. We find that two plagioclase crystals have extreme 87Sr/86Sr heterogeneity in excess of 5000 ppm (where ppm of 87Sr/Sr variability86=106⋅[Sr/8687Srmax−87Sr/86Srmin]/87Sr/86Sravg). In two of the plagioclase crystals, we identify the highest 87Sr/86Sr ratios (0.7224) ever measured in any fresh, mantle-derived ocean island basalt (OIB) or OIB-hosted mineral phase.We find that in 87Sr/86Sr-versus-Sr concentration space, the six plagioclase crystals overlap in a “common component” region with higher 87Sr/86Sr than has been previously identified in whole-rock Samoan lavas or mineral separates. We use the occurrence of olivine mineral inclusions (Fo=74.5±0.8, 2 SD) in the high-87Sr/86Sr zone of one plagioclase crystal to infer the bulk composition (Mg#=46.8±0.8, 2 SD) of the extreme EM2 magma from which the olivine and high-87Sr/86Sr plagioclase crystallized. We argue that a relatively evolved EM2 endmember magma mixed with at least one lower-87Sr/86Sr melt to generate the observed intra-crystal plagioclase isotopic heterogeneity.By inferring that subducted terrigenous sediment gives rise to EM2 signatures in Samoan lavas, we estimate that the quantity of sediment necessary to generate the most-elevated 87Sr/86Sr ratios observed in the Samoan plagioclase is ∼7% of the mantle source. We also estimate that sediment subduction into the mantle over geologic time has generated a sediment domain that constitutes 0.02% of the mass of the mantle, a much lower proportion than required in the EM2 mantle source. Even if subducted sediment is concentrated in large low-shear-velocity provinces (LLSVPs) at the base of the mantle (which constitute up to 7.7% of the mantle's mass), then only 0.25% of the LLSVPs are composed of sediment. This requires that the distribution of subducted sediment in the mantle is heterogeneous, and the high relative abundance of sediment in the Samoan EM2 mantle is an anomalous relic of ancient subduction that has survived convective attenuation

    What traits are carried on mobile genetic elements, and why?

    Get PDF
    Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes

    Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles

    Get PDF
    Subducting slabs carry water into the mantle and are a major gateway in the global geochemical water cycle. Fluid transport and release can be constrained with seismological data. Here we use joint active-source/local-earthquake seismic tomography to derive unprecedented constraints on multi-stage fluid release from subducting slow-spread oceanic lithosphere. We image the low P-wave velocity crustal layer on the slab top and show that it disappears beneath 60–100 km depth, marking the depth of dehydration metamorphism and eclogitization. Clustering of seismicity at 120–160 km depth suggests that the slab’s mantle dehydrates beneath the volcanic arc, and may be the main source of fluids triggering arc magma generation. Lateral variations in seismic properties on the slab surface suggest that serpentinized peridotite exhumed in tectonized slow-spread crust near fracture zones may increase water transport to sub-arc depths. This results in heterogeneous water release and directly impacts earthquakes generation and mantle wedge dynamics

    Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow

    Get PDF
    There is considerable controversy over the nature of geophysically recognized low-velocity-high-conductivity zones (LV-HCZs) within the Tibetan crust, and their role in models for the development of the Tibetan Plateau. Here we report petrological and geochemical data on magmas erupted 4.7-0.3 Myr ago in central and northern Tibet, demonstrating that they were generated by partial melting of crustal rocks at temperatures of 700-1,050°C and pressures of 0.5-1.5 GPa. Thus Pliocene-Quaternary melting of crustal rocks occurred at depths of 15-50 km in areas where the LV-HCZs have been recognized. This provides new petrological evidence that the LV-HCZs are sources of partial melt. It is inferred that crustal melting played a key role in triggering crustal weakening and outward crustal flow in the expansion of the Tibetan Plateau

    Evaluating the importance of metamorphism in the foundering of continental crust

    Get PDF
    The metamorphic conditions and mechanisms required to induce foundering in deep arc crust are assessed using an example of representative lower crust in SW New Zealand. Composite plutons of Cretaceous monzodiorite and gabbro were emplaced at ~1.2 and 1.8 GPa are parts of the Western Fiordland Orthogneiss (WFO); examples of the plutons are tectonically juxtaposed along a structure that excised ~25 km of crust. The 1.8 GPa Breaksea Orthogneiss includes suitably dense minor components (e.g. eclogite) capable of foundering at peak conditions. As the eclogite facies boundary has a positive dP/dT, cooling from supra-solidus conditions (T > 950 ºC) at high-P should be accompanied by omphacite and garnet growth. However, a high monzodioritic proportion and inefficient metamorphism in the Breaksea Orthogneiss resulted in its positive buoyancy and preservation. Metamorphic inefficiency and compositional relationships in the 1.2 GPa Malaspina Pluton meant it was never likely to have developed densities sufficiently high to founder. These relationships suggest that the deep arc crust must have primarily involved significant igneous accumulation of garnet–clinopyroxene (in proportions >75%). Crustal dismemberment with or without the development of extensional shear zones is proposed to have induced foundering of excised cumulate material at P > 1.2 GPa

    Arc magmas sourced from melange diapirs in subduction zones

    Get PDF
    Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 5 (2012): 862-867, doi:10.1038/ngeo1634.At subduction zones, crustal material is recycled back into the mantle. A certain proportion, however, is returned to the overriding plate via magmatism. The magmas show a characteristic range of compositions that have been explained by three-component mixing in their source regions: hydrous fluids derived from subducted altered oceanic crust and components derived from the thin sedimentary veneer are added to the depleted peridotite in the mantle beneath the volcanoes. However, currently no uniformly accepted model exists for the physical mechanism that mixes the three components and transports them from the slab to the magma source. Here we present an integrated physico-chemical model of subduction zones that emerges from a review of the combined findings of petrology, modelling, geophysics, and geochemistry: Intensely mixed metamorphic rock formations, so-called mélanges, form along the slab-mantle interface and comprise the characteristic trace-element patterns of subduction-zone magmatic rocks. We consider mélange formation the physical mixing process that is responsible for the geochemical three-component pattern of the magmas. Blobs of low-density mélange material, so-called diapirs, rise buoyantly from the surface of the subducting slab and provide a means of transport for well-mixed materials into the mantle beneath the volcanoes, where they produce melt. Our model provides a consistent framework for the interpretation of geophysical, petrological and geochemical data of subduction zones.H.M. was funded by the J. LamarWorzel Assistant Scientist Fund and the Penzance Endowed Fund in Support of Assistant Scientists. Funding from NSF grant #1119403 (G. Harlow) is acknowledged.2013-05-1

    Earthquake nucleation in the lower crust by local stress amplification

    Get PDF
    Deep intracontinental earthquakes are poorly understood, despite their potential to cause significant destruction. Although lower crustal strength is currently a topic of debate, dry lower continental crust may be strong under high-grade conditions. Such strength could enable earthquake slip at high differential stress within a predominantly viscous regime, but requires further documentation in nature. Here, we analyse geological observations of seismic structures in exhumed lower crustal rocks. A granulite facies shear zone network dissects an anorthosite intrusion in Lofoten, northern Norway, and separates relatively undeformed, microcracked blocks of anorthosite. In these blocks, pristine pseudotachylytes decorate fault sets that link adjacent or intersecting shear zones. These fossil seismogenic faults are rarely >15 m in length, yet record single-event displacements of tens of centimetres, a slip/length ratio that implies >1 GPa stress drops. These pseudotachylytes represent direct identification of earthquake nucleation as a transient consequence of ongoing, localised aseismic creep
    corecore