5 research outputs found

    Dark aerobic sulfide oxidation by anoxygenic phototrophs in anoxic waters

    Get PDF
    Anoxygenic phototrophic sulfide oxidation by green and purple sulfur bacteria (PSB) plays a key role in sulfide removal from anoxic shallow sediments and stratified waters. Although some PSB can also oxidize sulfide with nitrate and oxygen, little is known about the prevalence of this chemolithotrophic lifestyle in the environment. In this study, we investigated the role of these phototrophs in light‐independent sulfide removal in the chemocline of Lake Cadagno. Our temporally resolved, high‐resolution chemical profiles indicated that dark sulfide oxidation was coupled to high oxygen consumption rates of ~9 ÎŒM O2·h−1. Single‐cell analyses of lake water incubated with 13CO2 in the dark revealed that Chromatium okenii was to a large extent responsible for aerobic sulfide oxidation and it accounted for up to 40% of total dark carbon fixation. The genome of Chr. okenii reconstructed from the Lake Cadagno metagenome confirms its capacity for microaerophilic growth and provides further insights into its metabolic capabilities. Moreover, our genomic and single‐cell data indicated that other PSB grow microaerobically in these apparently anoxic waters. Altogether, our observations suggest that aerobic respiration may not only play an underappreciated role in anoxic environments but also that organisms typically considered strict anaerobes may be involved

    Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria

    Get PDF
    Members of the gammaproteobacterial clade SUP05 couple water column sulfide oxidation to nitrate reduction in sulfidic oxygen minimum zones (OMZs). Their abundance in offshore OMZ waters devoid of detectable sulfide has led to the suggestion that local sulfate reduction fuels SUP05-mediated sulfide oxidation in a so-called “cryptic sulfur cycle”. We examined the distribution and metabolic capacity of SUP05 in Peru Upwelling waters, using a combination of oceanographic, molecular, biogeochemical and single-cell techniques. A single SUP05 species, UThioglobus perditus, was found to be abundant and active in both sulfidic shelf and sulfide-free offshore OMZ waters. Our combined data indicated that mesoscale eddy-driven transport led to the dispersal of UT. perditus and elemental sulfur from the sulfidic shelf waters into the offshore OMZ region. This offshore transport of shelf waters provides an alternative explanation for the abundance and activity of sulfide-oxidizing denitrifying bacteria in sulfide-poor offshore OMZ waters

    Rapid microbial diversification of dissolved organic matter in oceanic surface waters leads to carbon sequestration

    Get PDF
    The pool of dissolved organic matter (DOM) in the deep ocean represents one of the largest carbon sinks on the planet. In recent years, studies have shown that most of this pool is recalcitrant, because individual compounds are present at low concentrations and because certain compounds seem resistant to microbial degradation. The formation of the diverse and recalcitrant deep ocean DOM pool has been attributed to repeated and successive processing of DOM by microorganisms over time scales of weeks to years. Little is known however, about the transformation and cycling that labile DOM undergoes in the first hours upon its release from phytoplankton. Here we provide direct experimental evidence showing that within hours of labile DOM release, its breakdown and recombination with ambient DOM leads to the formation of a diverse array of new molecules in oligotrophic North Atlantic surface waters. Furthermore, our results reveal a preferential breakdown of N and P containing molecules versus those containing only carbon. Hence, we show the preferential breakdown and molecular diversification are the crucial first steps in the eventual formation of carbon rich DOM that is resistant to microbial remineralization

    Adaptability as the key to success for the ubiquitous marine nitrite oxidizer Nitrococcus

    Get PDF
    Nitrite-oxidizing bacteria (NOB) have conventionally been regarded as a highly specialized functional group responsible for the production of nitrate in the environment. However, recent culture-based studies suggest that they have the capacity to lead alternative lifestyles, but direct environmental evidence for the contribution of marine nitrite oxidizers to other processes has been lacking to date. We report on the alternative biogeochemical functions, worldwide distribution, and sometimes high abundance of the marine NOB Nitrococcus. These largely overlooked bacteria are capable of not only oxidizing nitrite but also reducing nitrate and producing nitrous oxide, an ozone-depleting agent and greenhouse gas. Furthermore, Nitrococcus can aerobically oxidize sulfide, thereby also engaging in the sulfur cycle. In the currently fast-changing global oceans, these findings highlight the potential functional switches these ubiquitous bacteria can perform in various biogeochemical cycles, each with distinct or even contrasting consequences

    Syntrophic linkages between predatory Carpediemonas and specific prokaryotic populations

    No full text
    Most anoxic environments are populated by small (<10 Όm) heterotrophic eukaryotes that prey on different microbial community members. How predatory eukaryotes engage in beneficial interactions with other microbes has rarely been investigated so far. Here, we studied an example of such an interaction by cultivating the anerobic marine flagellate, Carpediemonas frisia sp. nov. (supergroup Excavata), with parts of its naturally associated microbiome. This microbiome consisted of so far uncultivated members of the Deltaproteobacteria, Bacteroidetes, Firmicutes, Verrucomicrobia and Nanoarchaeota. Using genome and transcriptome informed metabolic network modeling, we showed that Carpediemonas stimulated prokaryotic growth through the release of predigested biomolecules such as proteins, sugars, organic acids and hydrogen. Transcriptional gene activities suggested niche separation between biopolymer degrading Bacteroidetes, monomer utilizing Firmicutes and Nanoarchaeota and hydrogen oxidizing Deltaproteobacteria. An efficient metabolite exchange between the different community members appeared to be promoted by the formation of multispecies aggregates. Physiological experiments showed that Carpediemonas could also benefit from an association to these aggregates, as it facilitated the removal of inhibiting metabolites and increased the availability of prey bacteria. Taken together, our results provide a framework to understand how predatory microbial eukaryotes engage, across trophic levels, in beneficial interactions with specific prokaryotic populations
    corecore