338 research outputs found
Recommended from our members
Capacity market design options: a dynamic capacity investment model and a GB case study
Rising feed-in from renewable energy sources decreases margins, load factors, and thereby profitability of conventional generation in several electricity markets around the world. At the same time, conventional generation is still needed to ensure security of electricity supply. Therefore, capacity markets are currently being widely discussed as a measure to ensure generation adequacy in markets such as France, Germany, and the United States (e.g., Texas), or even implemented for example in Great Britain. We assess the effect of different capacity market design options in three scenarios: 1) no capacity market, 2) a capacity market for new capacity only, and 3) a capacity market for new and existing capacity. We compare the results along the three key dimensions of electricity policy ��� affordability, reliability, and sustainability. In a Great Britain case study we find that a capacity market increases generation adequacy since it provides incentives for new generation investments. Furthermore, our results show that a capacity market can lower the total bill of generation because it can reduce lost load and the potential to exercise market power. Additionally, we find that a capacity market for new capacity only is cheaper than a capacity market for new and existing capacity because it remunerates fewer generators in the first years after its introduction.renewable energy source
Dissect: detection and characterization of novel structural alterations in transcribed sequences
Motivation: Computational identification of genomic structural variants via high-throughput sequencing is an important problem for which a number of highly sophisticated solutions have been recently developed. With the advent of high-throughput transcriptome sequencing (RNA-Seq), the problem of identifying structural alterations in the transcriptome is now attracting significant attention
Barut-Girardello coherent states for u(p,q) and sp(N,R) and their macroscopic superpositions
The Barut-Girardello coherent states (BG CS) representation is extended to
the noncompact algebras u(p,q) and sp(N,R) in (reducible) quadratic boson
realizations. The sp(N,R) BG CS take the form of multimode ordinary
Schr\"odinger cat states. Macroscopic superpositions of 2^{n-1} sp(N,R) CS (2^n
canonical CS, n=1,2,...) are pointed out which are overcomplete in the N-mode
Hilbert space and the relation between the canonical CS and the u(p,q) BG-type
CS representations is established. The sets of u(p,q) and sp(N,R) BG CS and
their discrete superpositions contain many states studied in quantum optics
(even and odd N-mode CS, pair CS) and provide an approach to quadrature
squeezing, alternative to that of intelligent states. New subsets of weakly and
strongly nonclassical states are pointed out and their statistical properties
(first- and second-order squeezing, photon number distributions) are discussed.
For specific values of the angle parameters and small amplitude of the
canonical CS components these states approaches multimode Fock states with one,
two or three bosons/photons. It is shown that eigenstates of a squared
non-Hermitian operator A^2 (generalized cat states) can exhibit squeezing of
the quadratures of A.Comment: 29 pages, LaTex, 5 figures. Improvements in text, corrections in some
formulas. To appear in J. Phys. A, v. 3
Fast and accurate mapping of Complete Genomics reads
Many recent advances in genomics and the expectations of personalized medicine are made possible thanks to power of high throughput sequencing (HTS) in sequencing large collections of human genomes. There are tens of different sequencing technologies currently available, and each HTS platform have different strengths and biases. This diversity both makes it possible to use different technologies to correct for shortcomings; but also requires to develop different algorithms for each platform due to the differences in data types and error models. The first problem to tackle in analyzing HTS data for resequencing applications is the read mapping stage, where many tools have been developed for the most popular HTS methods, but publicly available and open source aligners are still lacking for the Complete Genomics (CG) platform. Unfortunately, Burrows-Wheeler based methods are not practical for CG data due to the gapped nature of the reads generated by this method. Here we provide a sensitive read mapper (sirFAST) for the CG technology based on the seed-and-extend paradigm that can quickly map CG reads to a reference genome. We evaluate the performance and accuracy of sirFAST using both simulated and publicly available real data sets, showing high precision and recall rates. © 2014 Elsevier Inc
Effects of Dietary Distillers Dried Grains with Solubles and Soybean Meal on Extruded Pellet Characteristics and Growth Responses of Juvenile Yellow Perch
A 126-d feeding trial was performed to investigate graded combinations of distillers dried grains with solubles (DDGS) and soybean meal (SBM) in diets formulated for yellow perch Perca flavescens. Six experimental diets contained DDGS and SBM at 0 and 31.5% (dry matter basis), respectively (0/31.5 diet), 10 and 26% (10/26), 20 and 20.5% (20/20.5), 30 and 15% (30/15), 40 and 9.5% (40/9.5), and 50 and 4% (50/4) to obtain similar levels of crude protein (mean ± SE = 30.1 ± 0.2%), crude lipid (16.7 ± 0.7%), and digestible energy (13.5 ± 0.2 kJ/g). Fourteen fish (initial individual weight = 19.1 ± 0.5 g) were randomly selected and stocked into each of twenty-four 110-L tanks (4 replicate tanks/diet). Common biological and mechanical filter systems were used to recirculate the water and maintain similar water quality. Fish that received the 40/9.5 diet exhibited the highest apparent absolute weight gain and percent weight gain, while fish that were fed the 10/26, 20/20.5, 30/15, and 40/9.5 diets exhibited similar absolute weight gain. Fish that were given the 20/20.5, 30/15, and 40/9.5 diets also exhibited similar percent weight gain. Fulton’s condition factor and apparent protein digestibility were significantly lower and higher, respectively, for fish that received the 50/4 diet than for all other treatment groups. Crude protein and crude lipid levels in muscle samples did not significantly differ among treatment groups. Results indicated that yellow perch can utilize DDGS plus SBM at a combined inclusion level of up to 49.5% without negative effects on growth. The mechanical strength and color of the extruded pellets were related to the level of DDGS plus SBM in the feed blends. Hepatosomatic indices were correlated with pellet color, while protein digestibility decreased with increasing pellet strength
Robertson Intelligent States
Diagonalization of uncertainty matrix and minimization of Robertson
inequality for n observables are considered. It is proved that for even n this
relation is minimized in states which are eigenstates of n/2 independent
complex linear combinations of the observables. In case of canonical
observables this eigenvalue condition is also necessary. Such minimizing states
are called Robertson intelligent states (RIS).
The group related coherent states (CS) with maximal symmetry (for semisimple
Lie groups) are particular case of RIS for the quadratures of Weyl generators.
Explicit constructions of RIS are considered for operators of su(1,1), su(2),
h_N and sp(N,R) algebras. Unlike the group related CS, RIS can exhibit strong
squeezing of group generators. Multimode squared amplitude squeezed states are
naturally introduced as sp(N,R) RIS. It is shown that the uncertainty matrices
for quadratures of q-deformed boson operators a_{q,j} (q > 0) and of any k
power of a_j = a_{1,j} are positive definite and can be diagonalized by
symplectic linear transformations. PACS numbers: 03.65.Fd, 42.50.DvComment: 23 pages, LaTex. Minor changes in text and references. Accepted in J.
Phys.
Filamentous giant Beggiatoaceae from the Guaymas Basin are capable of both denitrification and dissimilatory nitrate reduction to ammonium
Filamentous large sulfur-oxidizing bacteria (FLSB) of the family Beggiatoaceae are globally distributed aquatic bacteria that can control geochemical fluxes from the sediment to the water column through their metabolic activity. FLSB mats from hydrothermal sediments of Guaymas Basin, Mexico, typically have a "fried-egg" appearance, with orange filaments dominating near the center and wider white filaments at the periphery, likely reflecting areas of higher and lower sulfide fluxes, respectively. These FLSB store large quantities of intracellular nitrate that they use to oxidize sulfide. By applying a combination of 15N-labeling techniques and genome sequence analysis, we demonstrate that the white FLSB filaments were capable of reducing their intracellular nitrate stores to both nitrogen gas and ammonium by denitrification and dissimilatory nitrate reduction to ammonium (DNRA), respectively. On the other hand, our combined results show that the orange filaments were primarily capable of DNRA. Microsensor profiles through a laboratory-incubated white FLSB mat revealed a 2- to 3-mm vertical separation between the oxic and sulfidic zones. Denitrification was most intense just below the oxic zone, as shown by the production of nitrous oxide following exposure to acetylene, which blocks nitrous oxide reduction to nitrogen gas. Below this zone, a local pH maximum coincided with sulfide oxidation, consistent with nitrate reduction by DNRA. The balance between internally and externally available electron acceptors (nitrate) and electron donors (reduced sulfur) likely controlled the end product of nitrate reduction both between orange and white FLSB mats and between different spatial and geochemical niches within the white FLSB mat
On the evolution of superposition of squeezed displaced number states with the multiphoton Jaynes-Cummings model
In this paper we discuss the quantum properties for superposition of squeezed
displaced number states against multiphoton Jaynes-Cummings model (JCM). In
particular, we investigate atomic inversion, photon-number distribution,
purity, quadrature squeezing, Mandel parameter and Wigner function. We show
that the quadrature squeezing for three-photon absorption case can exhibit
revivals and collapses typical to those occurring in the atomic inversion for
one-photon absorption case. Also we prove that for odd number absorption
parameter there is a connection between the evolution of the atomic inversion
and the evolution of the Wigner function at the origin in phase space.
Furthermore, we show that the nonclassical states whose the Wigner functions
values at the origins are negative will be always nonclassical when they are
evolving through the JCM with even absorption parameter. Also we demonstrate
that various types of cat states can be generated via this system.Comment: 27 pages, 10 figure
- …