727 research outputs found

    Dynamics of metal clusters in rare gas clusters

    Full text link
    We investigate the dynamics of Na clusters embedded in Ar matrices. We use a hierarchical approach, accounting microscopically for the cluster's degrees of freedom and more coarsely for the matrix. The dynamical polarizability of the Ar atoms and the strong Pauli-repulsion exerted by the Ar-electrons are taken into account. We discuss the impact of the matrix on the cluster gross properties and on its optical response. We then consider a realistic case of irradiation by a moderately intense laser and discuss the impact of the matrix on the hindrance of the explosion, as well as a possible pump probe scenario for analyzing dynamical responses.Comment: Proceedings of the 30th International Workshop on Condensed Matter Theories, Dresden, June 05 - 10, 2006, World Scientific. 3 figure

    Time-dependent density functional theory calculation of van der Waals coefficient of sodium clusters

    Full text link
    In this paper we employ all-electron \textit{ab-initio} time-dependent density functional theory based method to calculate the long range dipole-dipole dispersion coefficient (van der Waals coefficient) C6C_{6} of sodium atom clusters containing even number of atoms ranging from 2 to 20 atoms. The dispersion coefficients are obtained via Casimir-Polder relation. The calculations are carried out with two different exchange-correlation potentials: (i) the asymptotically correct statistical average of orbital potential (SAOP) and (ii) Vosko-Wilk-Nusair representation of exchange-correlation potential within local density approximation. A comparison with the other theoretical results has been performed. We also present the results for the static polarizabilities of sodium clusters and also compare them with other theoretical and experimental results. These comparisons reveal that the SAOP results for C_{6} and static polarizability are quite accurate and very close to the experimental results. We examine the relationship between volume of the cluster and van der Waals coefficient and find that to a very high degree of correlation C_{6} scales as square of the volume. We also present the results for van der Waals coefficient corresponding to cluster-Ar atom and cluster-N_{2} molecule interactions.Comment: 22 pages including 6 figures. To be published in Journal of Chemical Physic

    Crustal Structure of Sri Lanka Derived From Joint Inversion of Surface Wave Dispersion and Receiver Functions Using a Bayesian Approach

    Get PDF
    We study the crustal structure of Sri Lanka by analyzing data from a temporary seismic network deployed in 2016-2017 to shed light on the amalgamation process from a geophysical perspective. Rayleigh wave phase dispersion curves from ambient noise cross correlation and receiver functions were jointly inverted using a transdimensional Bayesian approach. The Moho depths in Sri Lanka range between 30 and 40 km, with the thickest crust (38-40 km) beneath the central Highland Complex (HC). The thinnest crust (30-35 km) is found along the west coast, which experienced crustal thinning associated with the formation of the Mannar Basin. V-P/V-S ratios lie within a range of 1.60-1.82 and predominantly favor a felsic to intermediate bulk crustal composition with a significant silica content of the rocks. A major intracrustal (18-27 km), slightly westward dipping (similar to 4.3 degrees) interface with high V-S (similar to 4 km/s) underneath is prominent in the central HC, continuing into the western Vijayan Complex (VC). The discontinuity might have been part of the respective units prior to the collision and could be an indicator for the proposed tilting of the Wanni Complex/HC crustal sections. It might also be related to the deep crustal HC/VC thrust contact with the VC as an indenting promontory of high V-S. A low-velocity zone in the central HC could have been caused by fluid influx generated by the thrusting process

    South Atlantic opening: A plume-induced breakup?

    Get PDF
    Upwelling hot mantle plumes are thought to disintegrate continental lithosphere and are considered to be drivers of active continental breakup. The formation of the Walvis Ridge during the opening of the South Atlantic is related to a putative plume-induced breakup. We investigated the crustal structure of the Walvis Ridge (southeast Atlantic Ocean) at its intersection with the continental margin and searched for anomalies related to the possible plume head. The overall structure we identify suggests that no broad plume head existed during opening of the South Atlantic and anomalous mantle melting occurred only locally. We therefore question the importance of a plume head as a driver of continental breakup and further speculate that the hotspot was present before the rifting, leaving a track of kimberlites in the African craton

    Harmonics generation in electron-ion collisions in a short laser pulse

    Full text link
    Anomalously high generation efficiency of coherent higher field-harmonics in collisions between {\em oppositely charged particles} in the field of femtosecond lasers is predicted. This is based on rigorous numerical solutions of a quantum kinetic equation for dense laser plasmas which overcomes limitations of previous investigations.Comment: 4 pages, 4 eps-figures include

    Electric multipole plasmons in deformed sodium clusters

    Get PDF
    The random-phase-approximation (RPA) method with separable residual forces (SRPA) is proposed for the description of multipole electric oscillations of valence electrons in deformed alkali metal clusters. Both the deformed mean field and residual interaction are derived self-consistently from the Kohn-Sham functional. SRPA drastically simplifies the computational effort which is urgent if not decisive for deformed systems. The method is applied to the description of dipole, quadrupole and octupole plasmons in deformed sodium clusters of a moderate size. We demonstrate that, in clusters with the size N>50, Landau damping successfully competes with deformation splitting and even becomes decisive in forming the width and gross structure of the dipole plasmon. Besides, the plasmon is generated by excitations from both ground state and shape isomers. In such clusters familiar experimental estimates for deformation splitting of dipole plasmon are useless.Comment: 27 pages, 10 figure

    Semiclassical theory of surface plasmons in spheroidal clusters

    Get PDF
    A microscopic theory of linear response based on the Vlasov equation is extended to systems having spheroidal equilibrium shape. The solution of the linearized Vlasov equation, which gives a semiclassical version of the random phase approximation, is studied for electrons moving in a deformed equilibrium mean field. The deformed field has been approximated by a cavity of spheroidal shape, both prolate and oblate. Contrary to spherical systems, there is now a coupling among excitations of different multipolarity induced by the interaction among constituents. Explicit calculations are performed for the dipole response of deformed clusters of different size. In all cases studied here the photoabsorption strength for prolate clusters always displays a typical double-peaked structure. For oblate clusters we find that the high--frequency component of the plasmon doublet can get fragmented in the medium size region (N∌250N \sim 250). This fragmentation is related to the presence of two kinds of three-dimensional electron orbits in oblate cavities. The possible scaling of our semiclassical equations with the valence electron number and density is investigated.Comment: 23 pages, 8 figures, revised version, includes discussion of scalin
    • 

    corecore