376 research outputs found

    Influence of ion implantation on the magnetic and transport properties of manganite films

    Full text link
    We have used oxygen ions irradiation to generate controlled structural disorder in thin manganite films. Conductive atomic force microscopy CAFM), transport and magnetic measurements were performed to analyze the influence of the implantation process in the physical properties of the films. CAFM images show regions with different conductivity values, probably due to the random distribution of point defect or inhomogeneous changes of the local Mn3+/4+ ratio to reduce lattice strains of the irradiated areas. The transport and magnetic properties of these systems are interpreted in this context. Metal-insulator transition can be described in the frame of a percolative model. Disorder increases the distance between conducting regions, lowering the observed TMI. Point defect disorder increases localization of the carriers due to increased disorder and locally enhanced strain field. Remarkably, even with the inhomogeneous nature of the samples, no sign of low field magnetoresistance was found. Point defect disorder decreases the system magnetization but doesn t seem to change the magnetic transition temperature. As a consequence, an important decoupling between the magnetic and the metal-insulator transition is found for ion irradiated films as opposed to the classical double exchange model scenario.Comment: 27 pages, 11 Figure

    Strong magnetic field dependence of critical current densities and vortex activation energies in an anisotropic clean MgB2 thin film

    Get PDF
    We report the influence of two-band superconductivity on the flux creep and the critical current densities of a MgB2 thin film. The small magnetic penetration depth of lambda=50 +/- 10 nm at T=4 K is related to a clean pi-band. We find a high self-field critical current density J(C), which is strongly reduced with applied magnetic field, and attribute this to suppression of the superconductivity in the pi-band. The temperature dependence of the creep rate S (T) at low magnetic field can be explained by a simple Anderson-Kim mechanism. The system shows high pinning energies at low field that are strongly suppressed by high field. (C) 2014 Elsevier Ltd. All rights reserved.X1112Ysciescopu

    Policy Feedback and the Politics of the Affordable Care Act

    Get PDF
    There is a large body of literature devoted to how “policies create politics” and how feedback effects from existing policy legacies shape potential reforms in a particular area. Although much of this literature focuses on self‐reinforcing feedback effects that increase support for existing policies over time, Kent Weaver and his colleagues have recently drawn our attention to self‐undermining effects that can gradually weaken support for such policies. The following contribution explores both self‐reinforcing and self‐undermining policy feedback in relationship to the Affordable Care Act, the most important health‐care reform enacted in the United States since the mid‐1960s. More specifically, the paper draws on the concept of policy feedback to reflect on the political fate of the ACA since its adoption in 2010. We argue that, due in part to its sheer complexity and fragmentation, the ACA generates both self‐reinforcing and self‐undermining feedback effects that, depending of the aspect of the legislation at hand, can either facilitate or impede conservative retrenchment and restructuring. Simultaneously, through a discussion of partisan effects that shape Republican behavior in Congress, we acknowledge the limits of policy feedback in the explanation of policy stability and change

    CONTRAST-ENHANCED ULTRASOUND MONITORING OF PERFUSION CHANGES IN HEPATIC NEUROENDOCRINE METASTASES AFTER SYSTEMIC VERSUS SELECTIVE ARTERIAL 177LU/90Y-DOTATOC AND 213BI-DOTATOC RADIOPEPTIDE THERAPY

    Get PDF
    Radiopeptide therapy with beta emitter labeled 177Lu/90Y- DOTA(0)-Phe(1)-Tyr(3)-octreotide (DOTATOC) and more recently also alpha emitting 213Bi-DOTATOC are promising new treatments for neuroendocrine tumors. No early predictors for treatment response have been recognized and tumor-shrinkage after radiation therapy appears slowly. In some solid tumors a decline in tumor perfusion was found predictive of final treatment response but the gold standard multiphase computed tomography (CT) has a high radiation burden. Therefore we evaluated the ability of contrast-enhanced ultrasound (CEUS) to evaluate tumor perfusion as a response criteria. Materials and Methods: 14 patients with hepatic neuroendocrine tumor (NET) metastases were enrolled in the retrospective study. Eleven patients were treated with beta-emitting 177Lu/90Y-DOTATOC, either intravenous (i.v.) (n = 5) or intra-arterial (i.a.) (n = 6) and three patients received alpha-emitting 213Bi-DOTATOC (i.a.). CEUS and contrast-enhanced CT (CE-CT) were performed before and 3 months after treatment. Results: CE-CT and CEUS presented comparable results in the baseline study and in the assessment of perfusion changes due to the different treatment regimes. A therapy related decrease in tumor perfusion is an early predictor of longterm morphologic response. Conclusion: CEUS is a cheap, ubiquitary available and radiation free technique which showed comparable results for perfusion and diameter of liver metastases compared to CE-CT. Intensity reduction in an arterial phase CEUS can be seen as a positive sign indicating long term tumor response to treatment. Therefore CEUS may be considered as an imaging modality for monitoring early treatment after focal alpha and beta targeted therapy.JRC.E.5-Nuclear chemistr

    Black Titania and Niobia within Ten Minutes : Mechanochemical Reduction of Metal Oxides with Alkali Metal Hydrides

    Get PDF
    Partially or fully reduced transition metal oxides show extraordinary electronic and catalytic properties but are usually prepared by high temperature reduction reactions. This study reports the systematic investigation of the fast mechanochemical reduction of rutile-type TiO2 and H-Nb2O5 to their partially reduced black counterparts applying NaH and LiH as reducing agents. Milling time and oxide to reducing agent ratio show a large influence on the final amount of reduced metal ions in the materials. For both oxides LiH shows a higher reducing potential than NaH. An intercalation of Li+ into the structure of the oxides was proven by PXRD and subsequent Rietveld refinements as well as 6 Li solid-state NMR spectroscopy. The products showed a decreased band gap and the presence of unpaired electrons as observed by EPR spectroscopy, proving the successful reduction of Ti4+ and Nb5+. Furthermore, the developed material exhibits a significantly enhanced photocatalytic performance towards the degradation of methylene blue compared to the pristine oxides. The presented method is a general, time efficient and simple method to obtain reduced transition metal oxides

    Direct measurement of the magnetic penetration depth by magnetic force microscopy

    Get PDF
    We present an experimental approach using magnetic force microscopy for measurements of the absolute value of the magnetic penetration depth (lambda) in superconductors. Lambda is obtained in a simple and robust way without introducing any tip modeling procedure via direct comparison of the Meissner response curves for a material of interest to those measured on a reference sample. Using a well characterized Nb film as a reference, we determine the absolute value of lambda in a Ba(Fe0.92Co0.08)2As2 single crystal and a MgB2 thin film through a comparative experiment. Our apparatus features simultaneous loading of multiple samples, and allows straightforward measurement of the absolute value of lambda in superconducting thin film or single crystal samples.Fil: Kim, Jeehoon. No especifĂ­ca;Fil: Civale, L.. No especifĂ­ca;Fil: Nazaretski, E.. No especifĂ­ca;Fil: Haberkorn, Nestor Fabian. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte; ArgentinaFil: Ronning, F.. No especifĂ­ca;Fil: Sefat, A. S.. No especifĂ­ca;Fil: Tajima, T.. No especifĂ­ca;Fil: Moeckly, B. H.. No especifĂ­ca;Fil: Thompson, J. D.. No especifĂ­ca;Fil: Movshovich, R.. No especifĂ­ca

    High-temperature change of the creep rate in YBa 2Cu 3O 7-ÎŽ films with different pinning landscapes

    Get PDF
    Magnetic relaxation measurements in YBa 2Cu 3O 7-ÎŽ (YBCO) films at intermediate and high temperatures show that the collective vortex creep based on the elastic motion of the vortex lattice has a crossover to fast creep that significantly reduces the superconducting critical current density (J c). This crossover occurs at temperatures much lower than the irreversibility field line. We study the influence of different kinds of crystalline defects, such as nanorods, twin boundaries, and nanoparticles, on the high-temperature vortex phase diagram of YBCO films. We found that the magnetization relaxation data is a fundamental tool to understand the pinning at high temperatures. The results indicate that high J c values are directly associated with small creep rates. Based on the analysis of the depinning temperature in films with columnar defects, our results indicate that the size of the defects is the relevant parameter that determines thermal depinning at high temperatures. Also, the extension of the collective creep regime depends on the density of the pinning centers.Fil: Haberkorn, Nestor Fabian. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte; ArgentinaFil: Miura, M.. No especifĂ­ca;Fil: Baca, J.. No especifĂ­ca;Fil: Maiorov, B.. No especifĂ­ca;Fil: Usov, I.. No especifĂ­ca;Fil: Dowden, P.. No especifĂ­ca;Fil: Foltyn, S. R.. No especifĂ­ca;Fil: Holesinger, T. G.. No especifĂ­ca;Fil: Willis, J. O.. No especifĂ­ca;Fil: Marken, K. R.. No especifĂ­ca;Fil: Izumi, T.. No especifĂ­ca;Fil: Shiohara, Y.. No especifĂ­ca;Fil: Civale, L.. No especifĂ­ca

    Direct observation of electronic inhomogeneities induced by point defect disorder in manganite films

    Full text link
    We have investigated the influence of point defect disorder in the electronic properties of manganite films. Real-time mapping of ion irradiated samples conductivity was performed though conductive atomic force microscopy (CAFM). CAFM images show electronic inhomogeneities in the samples with different physical properties due to spatial fluctuations in the point defect distribution. As disorder increases, the distance between conducting regions increases and the metal-insulator transition shifts to lower temperatures. Transport properties in these systems can be interpreted in terms of a percolative model. The samples saturation magnetization decreases as the irradiation dose increases whereas the Curie temperature remains unchanged

    Diffusion controlled initial recombination

    Full text link
    This work addresses nucleation rates in systems with strong initial recombination. Initial (or `geminate') recombination is a process where a dissociated structure (anion, vortex, kink etc.) recombines with its twin brother (cation, anti-vortex, anti-kink) generated in the same nucleation event. Initial recombination is important if there is an asymptotically vanishing interaction force instead of a generic saddle-type activation barrier. At low temperatures, initial recombination strongly dominates homogeneous recombination. In a first part, we discuss the effect in one-, two-, and three-dimensional diffusion controlled systems with spherical symmetry. Since there is no well-defined saddle, we introduce a threshold which is to some extent arbitrary but which is restricted by physically reasonable conditions. We show that the dependence of the nucleation rate on the specific choice of this threshold is strongest for one-dimensional systems and decreases in higher dimensions. We discuss also the influence of a weak driving force and show that the transport current is directly determined by the imbalance of the activation rate in the direction of the field and the rate against this direction. In a second part, we apply the results to the overdamped sine-Gordon system at equilibrium. It turns out that diffusive initial recombination is the essential mechanism which governs the equilibrium kink nucleation rate. We emphasize analogies between the single particle problem with initial recombination and the multi-dimensional kink-antikink nucleation problem.Comment: LaTeX, 11 pages, 1 ps-figures Extended versio
    • 

    corecore