128 research outputs found

    Enzymatic Processing of Amelogenin during Continuous Crystallization of Apatite

    Get PDF
    Dental enamel forms through a protein-controlled mineralization and enzymatic degradation with a nanoscale precision that new engineering technologies may be able to mimic. Recombinant fulllength human amelogenin (rH174) and a matrix-metalloprotease (MMP-20) were employed in a pHstat titration system that enabled a continuous supply of calcium and phosphate ions over several days, mimicking the initial stages of matrix processing and crystallization in enamel in-vitro. Effects on the self-assembly and crystal growth from a saturated aqueous solution containing 0.4 mg/ml rH174 and MMP-20 with the weight ratio of 1:1000 with respect to rH174 were investigated. A transition from nanospheres to fibrous amelogenin assemblies was facilitated under conditions that involved an interaction between rH174 and the proteolytic cleavage products. Despite continuous titration, the levels of calcium exhibited a consistent trend of decreasing, thereby indicating its possible role in the protein self-assembly. This study suggests that mimicking enamel formation in-vitro requires the synergy between the aspects of matrix self-assembly, proteolysis and crystallization

    Protein disorder-order interplay to guide the growth of hierarchical mineralized structures

    Get PDF
    A major goal in materials science is to develop bioinspired functional materials based on the precise control of molecular building blocks across length scales. Here we report a protein-mediated mineralization process that takes advantage of disorder–order interplay using elastin-like recombinamers to program organic–inorganic interactions into hierarchically ordered mineralized structures. The materials comprise elongated apatite nanocrystals that are aligned and organized into microscopic prisms, which grow together into spherulite-like structures hundreds of micrometers in diameter that come together to fill macroscopic areas. The structures can be grown over large uneven surfaces and native tissues as acid-resistant membranes or coatings with tuneable hierarchy, stiffness, and hardness. Our study represents a potential strategy for complex materials design that may open opportunities for hard tissue repair and provide insights into the role of molecular disorder in human physiology and pathology

    Variations in human DEJ scallop size with tooth type

    Get PDF
    OBJECTIVE: Recent literature suggests that the scalloped structure of the dentino-enamel junction (DEJ) is critical for DEJ stability. Aim of our study was to see if there are differences in scallop size and shape with tooth type. METHODS: Enamel of extracted permanent human teeth was demineralised using EDTA. After fixation and dehydration the scallops of the DEJ were investigated in a scanning electron microscope. Scallop area and shape (circularity) were measured for molars, premolars, canines and incisors. RESULTS: Scallop area showed main effects for tooth type and specimen, while, due to high variability in third molars, there was also an interaction effect (repeated measures two-way ANOVA, p < 0.05). Differences between tooth types were statistically significant, suggesting that posterior teeth showed larger scallops compared to anterior teeth. Differences in shape (circularity) were not statistically significant. CONCLUSION: Our results suggest that teeth which are subject to higher masticatory loads (posterior teeth) show larger and more pronounced scallops. These findings might be of interest for improving other interfaces joining dissimilar materials

    Enamel-like apatite crown covering amorphous mineral in a crayfish mandible

    Get PDF
    Carbonated hydroxyapatite is the mineral found in vertebrate bones and teeth, whereas invertebrates utilize calcium carbonate in their mineralized organs. In particular, stable amorphous calcium carbonate is found in many crustaceans. Here we report on an unusual, crystalline enamel-like apatite layer found in the mandibles of the arthropod Cherax quadricarinatus (freshwater crayfish). Despite their very different thermodynamic stabilities, amorphous calcium carbonate, amorphous calcium phosphate, calcite and fluorapatite coexist in well-defined functional layers in close proximity within the mandible. The softer amorphous minerals are found primarily in the bulk of the mandible whereas apatite, the harder and less soluble mineral, forms a wear-resistant, enamel-like coating of the molar tooth. Our findings suggest a unique case of convergent evolution, where similar functional challenges of mastication led to independent developments of structurally and mechanically similar, apatite-based layers in the teeth of genetically remote phyla: vertebrates and crustaceans

    Amelogenin Nanoparticles in Suspension: Deviations from Spherical Shape and pH-Dependent Aggregation

    Get PDF
    It is well-known that amelogenin self-assembles to form nanoparticles, usually referred to as amelogenin nanospheres, despite the fact that not much is known about their actual shape in solution. In the current paper, we combine SAXS and DLS to study the three-dimensional shape of the recombinant amelogenins rP172 and rM179. Our results show for the first time that amelogenins build oblate nanoparticles in suspension using experimental approaches that do not require the proteins to be in contact with a support material surface. The SAXS studies give evidence for the existence of isolated amelogenin nano-oblates with aspect ratios in the range of 0.45-0.5 at pH values higher than pH 7.2 and show an aggregation of these nano-oblates at lower pH values. The role of the observed oblate shape in the formation of chain-like structures at physiological conditions is discussed as a key factor in the biomineralization of dental enamel

    Ions-modified nanoparticles affect functional remineralization and energy dissipation through the resin-dentin interface

    Get PDF
    The aim of this study was to evaluate changes in the mechanical and chemical behavior, and bonding ability at dentin interfaces infiltrated with polymeric nanoparticles (NPs) prior to resin application. Dentin surfaces were treated with 37% phosphoric acid followed by application of an ethanol suspension of NPs, Zn-NPs or Ca-NPs followed by the application of an adhesive, Single Bond (SB). Bonded interfaces were stored for 24 h, submitted to microtensile bond strength test, and evaluated by scanning electron microscopy. After 24 h and 21 d of storage, the whole resin-dentin interface adhesive was evaluated using a Nano-DMA. Complex modulus, storage modulus and tan delta (δ) were assessed. AFM imaging and Raman analysis were performed. Bond strength was not affected by NPs infiltration. After 21 d of storage, tan δ generally decreased at Zn-NPs/resin-dentin interface, and augmented when Ca-NPs or non-doped NPs were used. When both Zn-NPs and Ca-NPs were employed, the storage modulus and complex modulus decreased, though both moduli increased at the adhesive and at peritubular dentin after Zn-NPs infiltration. The phosphate and the carbonate peaks, and carbonate substitution, augmented more at interfaces promoted with Ca-NPs than with Zn-NPs after 21 d of storage, but crystallinity did not differ at created interfaces with both ions-doped NPs. Crosslinking of collagen and the secondary structure of collagen improved with Zn-NPs resin-dentin infiltration. Ca-NPs-resin dentin infiltration produced a favorable dissipation of energy with minimal stress concentration trough the crystalline remineralized resin-dentin interface, causing minor damage at this structure.This work was supported by the Ministry of Economy and Competitiveness (MINECO) [Project MAT2014-52036-P]

    Diffraction techniques and vibrational spectroscopy opportunities to characterise bones

    Get PDF
    From a histological point of view, bones that allow body mobility and protection of internal organs consist not only of different organic and inorganic tissues but include vascular and nervous elements as well. Moreover, due to its ability to host different ions and cations, its mineral part represents an important reservoir, playing a key role in the metabolic activity of the organism. From a structural point of view, bones can be considered as a composite material displaying a hierarchical structure at different scales. At the nanometre scale, an organic part, i.e. collagen fibrils and an inorganic part, i.e. calcium phosphate nanocrystals are intimately mixed to assure particular mechanical properties

    An evaluation of the effect of non-setting calcium hydroxide on human dentine: a pilot study.

    Get PDF
    AIM: To evaluate the effect of non-setting calcium hydroxide (NSCH) on the hardness and elastic modulus of dentine from extracted permanent premolar human teeth. METHODS: 30 freshly extracted single rooted human premolar teeth were decoronated and the roots then sectioned longitudinally into equal halves. In the experimental group a thin layer of NSCH was applied whilst the control group had no medicament. After 1, 3 and 6 months, nanoindentation was used to assess dentine hardness and the modulus of elasticity. Scanning Electron Microscopy (SEM) was used to visualize the depth of penetration of NSCH into the dentinal tubules. RESULTS: SEM images showed that there were no structural changes in the dentine slabs that had NSCH application after 1, 3 or even 6 months. However, penetration of NSCH into the dentine tubules was seen at both 3 and 6 months with a significant reduction in the hardness of dentine observed at 3 (p<0.02) and 6 months (p<0.01). The modulus of elasticity was significantly lower (p<0.01) at 6 months. CONCLUSION: It appears that there is a significant reduction in the hardness of dentine with increasing periods of calcium hydroxide application. Prolonged application of NSCH could have a detrimental effect on dentine, making the dentine more prone to fracture
    corecore